IEEE/CAA Journal of Automatica Sinica
Citation: | Liang Sun, "Saturated Adaptive Output-Constrained Control of Cooperative Spacecraft Rendezvous and Docking ," IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1462-1470, Nov. 2019. doi: 10.1109/JAS.2019.1911621 |
[1] |
J. L. Goodman, " History of space shuttle rendezvous and proximity operations,” J. Spacecraft Rockets, vol. 43, no. 5, pp. 944–959, 2006. doi: 10.2514/1.19653
|
[2] |
Y. Xie, H. Huang, H. Yong, and G. Zhang, " Applications of advanced control methods in spacecraft: progress, challenges, and future prospects,” Front. Infor. Technol. Electron. Eng., vol. 17, no. 9, pp. 2095–9184, 2016.
|
[3] |
W. He, Y. Dong, and C. Sun, " Adaptive neural impedance control of a robotic manipulator with input saturation,” IEEE Trans. Syst. Man Cyber:Syst., vol. 46, no. 3, pp. 334–344, 2016. doi: 10.1109/TSMC.2015.2429555
|
[4] |
L. Sun and Z. Zheng, " Disturbance observer-based robust saturated control for spacecraft proximity maneuvers,” IEEE Trans. Control Syst. Technol., vol. 26, no. 2, pp. 684–692, 2018. doi: 10.1109/TCST.2017.2669145
|
[5] |
K. Xia and W. Huo, " Disturbance observer based fault-tolerant control for cooperative spacecraft rendezvous and docking with input saturation,” Nonlinear Dyn., vol. 88, no. 4, pp. 2735–2745, 2017. doi: 10.1007/s11071-017-3407-3
|
[6] |
Q. Li, J. Yuan, B. Zhang, and C. Gao, " Model predictive control for autonomous rendezvous and docking with a tumbling target,” Aerosp. Sci. Technol., vol. 69, pp. 700–711, 2017. doi: 10.1016/j.ast.2017.07.022
|
[7] |
H. Dong, Q. Hu, and M. R. Akella, " Safety control for spacecraft autonomous rendezvous and docking under motion constraints,” J. Guid. Control Dyn., vol. 40, no. 7, pp. 1680–1692, 2017. doi: 10.2514/1.G002322
|
[8] |
K. P. Tee, S. S. Ge, and E. H. Tay, " Barrier Lyapunov functions for the control of output constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009. doi: 10.1016/j.automatica.2008.11.017
|
[9] |
B. Ren, S. S. Ge, K. P. Tee, and T. H. Lee, " Adaptive control for parametric output feedback systems with output constraint,” in Proc. 48th IEEE Conf. Decision Control, Shanghai, China, 2009.
|
[10] |
B. Niu and J. Zhao, " Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems,” Syst. Control Lett., vol. 62, no. 10, pp. 963–971, 2013. doi: 10.1016/j.sysconle.2013.07.003
|
[11] |
K. P. Tee, B. B. Ren, and S. S. Ge, " Control of nonlinear systems with time-varying output constraints,” Automatica, vol. 47, no. 11, pp. 2511–2516, 2011. doi: 10.1016/j.automatica.2011.08.044
|
[12] |
X. Jin and J.-X. Xu, " Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties,” Automatica, vol. 49, no. 8, pp. 2508–2516, 2013. doi: 10.1016/j.automatica.2013.04.039
|
[13] |
X. Jin, " Adaptive finite-time fault tolerant tracking control of a class of MIMO nonlinear systems with output constraints,” Int. J. Robust Nonlinear Control, vol. 27, no. 5, pp. 722–741, 2017. doi: 10.1002/rnc.3596
|
[14] |
X. Jin, " Iterative learning control for output-constrained nonlinear systems with input quantization and actuator faults,” Int. J. Robust Nonlinear Control, vol. 28, no. 2, pp. 729–741, 2018. doi: 10.1002/rnc.v28.2
|
[15] |
W. He, S. Zhang, and S. S. Ge, " Adaptive control of a flexible crane system with the boundary output constraint,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4126–4133, 2014. doi: 10.1109/TIE.2013.2288200
|
[16] |
W. He and S. S. Ge, " Vibration control of a flexible beam with output constraint,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 5023–5030, 2015. doi: 10.1109/TIE.2015.2400427
|
[17] |
W. He and S. S. Ge, " Cooperative control of a nonuniform gantry crane with constrained tension,” Automatica, vol. 66, no. 4, pp. 146–154, 2016.
|
[18] |
W. He, A. O. David, Z. Yin, and C. Sun, " Neural network control of a robotic manipulator with input deadzone and output constraint,” IEEE Trans. Syst. Man Cyber:Syst., vol. 46, no. 6, pp. 759–770, 2016. doi: 10.1109/TSMC.2015.2466194
|
[19] |
W. He, B. Huang, Y. Dong, Z. Li, and C. Su, " Adaptive neural network control for robotic manipulators with unknown deadzone,” IEEE Trans. Cyber., vol. 48, no. 9, pp. 2670–2682, 2018. doi: 10.1109/TCYB.2017.2748418
|
[20] |
X. Jin, " Nonrepetitive leader-follower formation tracking for multiagent systems with LOS range and gngle constraints using iterative learning control,” IEEE Trans. Cyber., DOI: 10.1109/TCYB.2018.2817610
|
[21] |
X. Jin, " Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraintes,” Automatica, vol. 68, pp. 228–236, 2016. doi: 10.1016/j.automatica.2016.01.064
|
[22] |
Z. Zheng, L. Sun, and L. Xie, " Error constrained LOS path following of a surface vessel with actuator saturation and faults,” IEEE Trans. Syst. Man Cyber.:Syst., vol. 48, no. 10, pp. 1794–1805, 2018. doi: 10.1109/TSMC.2017.2717850
|
[23] |
Z. Zuo and C. Wang, " Adaptive trajectory tracking control of output constrained multi-rotors systems,” IET Control Theory Appl., vol. 8, no. 13, pp. 1163–1174, 2014. doi: 10.1049/iet-cta.2013.0949
|
[24] |
B. Xu, Z. Shi, F. Sun, and W. He, " Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults,” IEEE Trans. Cyber., DOI: 10.1109/TCYB.2018.2794972
|
[25] |
L. Sun, W. Huo, and Z. Jiao, " Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 480–492, 2017. doi: 10.1109/TIE.2016.2609399
|
[26] |
H. Yoon and B. N. Agrawal, " Novel expressions of equations of relative motion and control in Keplerian orbits,” J. Guid. Control Dyn., vol. 32, no. 2, pp. 664–669, 2009. doi: 10.2514/1.38210
|
[27] |
H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems, Reston: AIAA, 2003.
|
[28] |
R. Kristiansen and P.J. Nicklasson, " Spacecraft formation flying: a review and new results on state feedback control,” Acta Astronautica, vol. 65, pp. 1537–1552, 2009. doi: 10.1016/j.actaastro.2009.04.014
|
[29] |
A. H. J. De Ruiter and C. J. Damaren, " Effect of attitude parameterization on the perfermance of passivity-based adaptive attitude control,” in Proc. AIAA Guid., Nav. Control Conf. Exihib., Montreal, Canada, 2001, AIAA-2001-4154.
|
[30] |
S. G. Kim, J. L. Crassidis, Y. Cheng, A. M. Fosbury, and J. L. Junkins, " Kalman filtering for relative spacecraft attitude and position estimation,” J. Guid. Control Dyn., vol. 30, no. 1, pp. 133–143, 2007. doi: 10.2514/1.22377
|
[31] |
S. Segal, A. Carmi, and P. Gurfil, " Stereovision-based estimation of relative dynamics between noncooperative satellites: theory and experiments,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 568–584, 2014. doi: 10.1109/TCST.2013.2255288
|
[32] |
L. Sun and W. Huo, " Robust adaptive control for spacecraft cooperative rendezvous and docking,” in Proc. IEEE 52nd Annual Conf. Decision Control, Firenze, Italy, pp. 5516–5521, 2013.
|
[33] |
L. Sun, W. Huo, and Z. Jiao, " Robust nonlinear adaptive relative pose control for cooperative spacecraft during rendezvous and proximity operations,” IEEE Trans. Control Syst. Technol., vol. 25, no. 5, pp. 1840–1847, 2017. doi: 10.1109/TCST.2016.2618907
|
[34] |
G. Vukovich and H. Gui, " Robust adaptive tracking of rigid-body motion with applications to asteroid proximity operations,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 1, pp. 419–430, 2017. doi: 10.1109/TAES.2017.2650778
|
[35] |
G. P. Incremona, A. Ferrara, and L. Magni, " MPC for robot manipulators with integral sliding modes generation,” IEEE-ASME Trans. Mechatronics, vol. 22, no. 3, pp. 1299–1307, 2017. doi: 10.1109/TMECH.2017.2674701
|