IEEE/CAA Journal of Automatica Sinica
Citation: | Yun Chen and Gang Chen, "Stability Analysis of Systems With Time-varying Delay via a Novel Lyapunov Functional," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1068-1073, June 2019. doi: 10.1109/JAS.2019.1911597 |
[1] |
X. Y. Yu, X. J. F. Hong, J. Qi, L. L. Ou, and Y. L. He, "Research on the low-order control strategy of the power system with time delay, " IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 501-508, Mar. 2018. http://ieeexplore.ieee.org/document/8283977/
|
[2] |
E. Fridman, Introduction to Time-Delay Systems: Analysis and Control, Basel: Springer International Publishing/Birkh$\ddot{a}$user, 2014.
|
[3] |
Z. G. Zeng, T. W. Huang, and W. X. Zheng, "Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function, " IEEE Trans. Neural Netw. , vol. 21, no. 8, pp. 1371-1377, Jul. 2010. http://ieeexplore.ieee.org/document/5508438
|
[4] |
J. Sun, G. P. Liu, J. Chen, and D. Rees, "Improved delay-range-dependent stability criteria for linear systems with time-varying delays, " Automatica, vol. 46, no. 2, pp. 466-470, Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0005109809005263
|
[5] |
H. B. Zeng, K. L. Teo, Y. He, and W. Wang, "Sampled-data-based dissipative control of T-S fuzzy systems, " Appl. Math. Model. , vol. 65, pp. 415-427, Jan. 2019.
|
[6] |
H. B. Zeng, K. L. Teo, and Y. He, "A new looped-functional for stability analysis of sampled-data systems, " Automatica, vol. 82, pp. 328-331, Aug. 2017. http://www.sciencedirect.com/science/article/pii/S0005109817302455
|
[7] |
H. B. Zeng, J. H. Park, J. W. Xia, and S. P. Xiao, "Improved delay-dependent stability criteria for T-S fuzzy systems with time-varying delay, " Appl. Math. Comput. , vol. 235, pp. 492-501, May 2014. http://www.sciencedirect.com/science/article/pii/S0096300314003580
|
[8] |
X. M. Zhang and Q. L. Han, "Event-based $H_{infty}$ filtering for sampled-data systems, " Automatica, vol. 51, pp. 55-69, Jan. 2015.
|
[9] |
C. K. Zhang, Y. He, L. Jiang, M. Wu, and H. B. Zeng, "Delay-variation-dependent stability of delayed discrete-time systems, " IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2663-2669, Nov. 2016. http://ieeexplore.ieee.org/document/7336498/
|
[10] |
C. K. Zhang, Y. He, L. Jiang, and M. Wu, "An improved summation inequality to discrete-time systems with time-varying delay, " Automatica, vol. 74, pp. 10-15, Dec. 2016. http://www.sciencedirect.com/science/article/pii/S0005109816303089
|
[11] |
S. Y. Lee, W. I. Lee, and P. Park, "Orthogonal-polynomials-based integral inequality and its applications to systems with additive time-varying delays, " J. Frankl. Inst. , vol. 355, no. 1, pp. 421-435, Jan. 2018. http://www.sciencedirect.com/science/article/pii/S0016003217305975
|
[12] |
J. Park and P. Park, "$H_{infty}$ sampled-state feedback control for synchronization of chaotic Lure systems with time delays, " J. Frankl. Inst. , vol. 355, no. 16, pp. 8005-8026, Nov. 2018.
|
[13] |
J. M. Wei, Y. N. Hu, and M. M. Sun, "Adaptive iterative learning control for a class of nonlinear time-varying systems with unknown delays and input dead-zone, " IEEE/CAA J. Autom. Sinica, vol. 1, no. 3, pp. 302-314, Jul. 2014. http://www.cnki.com.cn/Article/CJFDTotal-ZDHB201403010.htm
|
[14] |
T. H. Lee, J. H. Park, and S. Y. Xu, "Relaxed conditions for stability of time-varying delay systems, " Automatica, vol. 75, pp. 11-15, Jan. 2017. http://www.sciencedirect.com/science/article/pii/S000510981630334X
|
[15] |
T. H. Lee and J. H. Park, "Improved stability conditions of time-varying delay systems based on new Lyapunov functionals, '' J. Frankl. Inst. , vol. 355, no. 3, pp. 1176-1191, Feb. 2018.
|
[16] |
C. K. Zhang, Y. He, L. Jiang, and M. Wu, "Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals, " IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 5331-5336, Oct. 2017. http://ieeexplore.ieee.org/document/7765078/
|
[17] |
K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Cambridge, MA, USA: Birkh$\ddot{a}$user, 2003.
|
[18] |
A. Seuret and F. Gouaisbaut, "Wirtinger-based integral inequality: application to time-delay systems, '' Automatica, vol. 49, no. 9, pp. 2860-2866, Sep. 2013. http://www.sciencedirect.com/science/article/pii/S0005109813003130
|
[19] |
A. Seuret and F. Gouaisbaut, "Stability of linear systems with time-varying delays using Bessel-Legendre inequalities, " IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 225-232, Jan. 2018. http://ieeexplore.ieee.org/document/7987762/
|
[20] |
A. Seuret, F. Gouaisbaut, and L. Baudouin, "D1. 1-overview of Lyapunov methods for time-delay systems, "[Online]. Available: https://hal.archives-ouvertes.fr/hal-01369516, Accessed on: 2016.
|
[21] |
J. D. Wang, Z. S. Wang, S. B. Ding, and H. G. Zhang, "Refined Jensen-based multiple integral inequality and its application to stability of time-delay systems, " IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 758-764, May 2018. http://www.cnki.com.cn/Article/CJFDTotal-ZDHB201803013.htm
|
[22] |
P. Park, W. J. Ko, and C. Jeong, "Reciprocally convex approach to stability of systems with time-varying delays, " Automatica, vol. 47, no. 1, pp. 235-238, Jan. 2011. http://www.sciencedirect.com/science/article/pii/S0005109810004280
|
[23] |
C. K. Zhang, Y. He, L. Jiang, M. Wu, and H. B. Zeng, "Stability analysis of systems with time-varying delay via relaxed integral inequalities, " Syst. Control Lett. , vol. 92, pp. 52-61, Jun. 2016. http://www.sciencedirect.com/science/article/pii/S0167691116000591
|
[24] |
C. K. Zhang, Y. He, L. Jiang, M. Wu, and Q. G. Wang, "An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, " Automatica, vol. 85, pp. 481-485, Nov. 2017. http://www.sciencedirect.com/science/article/pii/S0005109817304028
|
[25] |
K. Liu, A. Seuret, and Y. Q. Xia, "Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality, " Automatica, vol. 76, pp. 138-142, Feb. 2017. http://www.sciencedirect.com/science/article/pii/S0005109816304356
|
[26] |
X. M. Zhang, Q. L. Han, X. Ge, and B. L. Zhang, "Passivity analysis of delayed neural networks based on Lyapunov-Krasovskii functionals with delay-dependent matrices, " IEEE Trans. Cybern. , vol. 313, pp. 1-11, Oct. 2018.
|
[27] |
X. M. Zhang, Q. L. Han, and X. Ge, "An overview of neuronal state estimation of neural networks with time-varying delays, " Inf. Sci. , vol. 478, pp. 83-99, Apr. 2019.
|
[28] |
X. M. Zhang, Q. L. Han, X. Ge, and D. Ding, "An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays, " Neurocomputing, vol. 313, pp. 392-401, Nov. 2018. http://www.sciencedirect.com/science/article/pii/S0925231218307744
|
[29] |
X. M. Zhang and Q. L. Han, "Global asymptotic stability for a class of generalized neural networks with interval time-varying delays, " IEEE Trans. Neural Netw. , vol. 22, no. 8, pp. 1180-1192, Aug. 2011. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21708501
|
[30] |
J. Chen, S. Xu, B. Zhang, and G. Liu, "A note on relationship between two classes of integral inequalities, " IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 4044-4049, Oct. 2017. http://ieeexplore.ieee.org/document/7592938/
|
[31] |
H. B. Zeng, Y. He, M. Wu, and J. H. She, "Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, " IEEE Trans. Autom. Control, vol. 60, no. 10, pp. 2768-2772, Oct. 2015. http://ieeexplore.ieee.org/document/7045593/
|
[32] |
H. B. Zeng, Y. He, M. Wu, and J. H. She, "New results on stability analysis for systems with discrete distributed delay, " Automatica, vol. 60, pp. 189-192, Oct. 2015.
|
[33] |
W. I. Lee, S. Y. Lee, and P. G. Park, "Affine Bessel-Legendre inequality: application to stability analysis for systems with time-varying delays, " Automatica, vol. 93, pp. 535-539, Jul. 2018. http://www.sciencedirect.com/science/article/pii/S0005109818301687
|
[34] |
J. H. Kim, "Further improvement of Jensen inequality and application to stability of time-delayed systems, '' Automatica, vol. 64, pp. 121-125, Feb. 2016. http://www.sciencedirect.com/science/article/pii/S0005109815003519
|
[35] |
X. M. Zhang, Q. L. Han, A. Seuret, and F. Gouaisbaut, "An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, " Automatica, vol. 84, pp. 221-226, Oct. 2017. http://www.sciencedirect.com/science/article/pii/S000510981730242X
|