IEEE/CAA Journal of Automatica Sinica
Citation: | Bing He, Jiangtao Cui, Bin Xiao and Xuan Wang, "Image Analysis by Two Types of Franklin-Fourier Moments," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1036-1051, July 2019. doi: 10.1109/JAS.2019.1911591 |
[1] |
M. R. Teague, " Image analysis via the general theory of moments,” J. Optical Society of America, vol. 69, no. 8, pp. 1468, 1980.
|
[2] |
C. H. Teh and R. T. Chin, " On image analysis by the methods of moments,” IEEE Trans. Pattern Anal. Machine Intell, vol. 10, no. 4, pp. 496–513, 1988. doi: 10.1109/34.3913
|
[3] |
C. Kan and M. D. Srinath, " Invariant character recognition with zernike and orthogonal fouriermellin moments,” Pattern Recognition, vol. 35, no. 1, pp. 143C154, 2002.
|
[4] |
L. Wang and G. Healey, " Using zernike moments for the illumination and geometry invariant classification of multispectral texture,” IEEE Trans. Image Processing A Publication of the IEEE Signal Processing Society, vol. 7, no. 2, pp. 196–203, 1998. doi: 10.1109/83.660996
|
[5] |
D. Zhang and G. Lu, " Evaluation of mpeg-7 shape descriptors against other shape descriptors,” Multimedia Systems, vol. 9, no. 1, pp. 15–30, 2003. doi: 10.1007/s00530-002-0075-y
|
[6] |
M. Hu, " Visual pattern recognition by moment invariants,” Information Theory IRE Trans., vol. 8, no. 2, pp. 179–187, 1962. doi: 10.1109/TIT.1962.1057692
|
[7] |
J. Flusser, B. Zitova, and T. Suk, Moments and Moment Invariants in Pattern Recognition, Wiley Publishing, 2009.
|
[8] |
R. Mukundan and K. R. Ramakrishnan, Moment Functions in Image Analysis-Theory and Applications, World Scientific,, 1998.
|
[9] |
H. T. Hu, Y. D. Zhang, C. Shao, and Q. Ju, " Orthogonal moments based on exponent functions: exponent-fourier moments,” Pattern Recognition, vol. 47, no. 8, pp. 2596–2606, 2014. doi: 10.1016/j.patcog.2014.02.014
|
[10] |
S. X. Liao and M. Pawlak, " On image analysis by moments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 3, pp. 254–266, 1996. doi: 10.1109/34.485554
|
[11] |
Y. Xin, M. Pawlak, and S. Liao, " Accurate computation of zernike moments in polar coordinates,” IEEE Trans. Image Processing, vol. 16, no. 2, pp. 581–587, 2007. doi: 10.1109/TIP.2006.888346
|
[12] |
L. Kotoulas and I. Andreadis, " Accurate calculation of image moments,” IEEE Trans. Image Processing, vol. 16, no. 8, pp. 2028–2037, 2007. doi: 10.1109/TIP.2007.899621
|
[13] |
H. Lin, J. Si, and G. P. Abousleman, " Orthogonal rotation-invariant moments for digital image processing.,” IEEE Trans. Image Processing, vol. 17, no. 3, pp. 272, 2008. doi: 10.1109/TIP.2007.916157
|
[14] |
Y. Sheng and L. Shen, " Orthogonal fourier-mellin moments for invariant pattern recognition,” J. Optical Society of America A, vol. 11, no. 6, pp. 1748–1757, 1994. doi: 10.1364/JOSAA.11.001748
|
[15] |
B. Xiao, L. Li, Y. Li, W. Li, and G. Wang, " Image analysis by fractional-order orthogonal moments,” Information Sciences 382–383: 135–149, 2017.
|
[16] |
R. Mukundan, S. H. Ong, and P. A. Lee, " Image analysis by tchebichef moments,” IEEE Trans. Image Processing A Publication of the IEEE Signal Processing Society, vol. 10, no. 9, pp. 1357–64, 2001. doi: 10.1109/83.941859
|
[17] |
H. S. A. Barmak and J. Flusser, " Fast computation of krawtchouk moments,” Information Sciences, vol. 288, no. C, pp. 73–86, 2014.
|
[18] |
B. Xiao, Y. Zhang, L. Li, W. Li, and G. Wang, " Explicit krawtchouk moment invariants for invariant image recognition,” J. Electronic Imaging, vol. 25, no. 2, pp. 023002, 2016. doi: 10.1117/1.JEI.25.2.023002
|
[19] |
W. Chen, Z. Cai, and D. Qi, " Orthogonal franklin moments and its application for image representation,” Chinese J. Computers, vol. 37, no. 121, pp. 1–8, 2014.
|
[20] |
P. Franklin, " A set of continuous orthogonal functions,” Mathematische Annalen, vol. 100, no. 1, pp. 522–529, 1928. doi: 10.1007/BF01448860
|
[21] |
Z. C. Cai, W. Chen, D. X. Qi, and Z. S. Tang, " A class of general Franklin functions and its application,” Chinese J. Computers, vol. 32, no.10, pp. 2004-2013, 2009.
|
[22] |
Y. Meyer and R. D. Ryan, Wavelets: Algorithms and Applications. SIAM, l993.
|
[23] |
L. Guo, M. Dai, and M. Zhu, " Quaternion moment and its invariants for color object classification,” Information Sciences, vol. 273, no. 273, pp. 132–143, 2014.
|
[24] |
E. G. Karakasis, G. A. Papakostas, D. E. Koulouriotis, and V. D. Tourassis, " Generalized dual hahn moment invariants,” Pattern Recognition, vol. 46, no. 7, pp. 1998–2014, 2013. doi: 10.1016/j.patcog.2013.01.008
|
[25] |
H. Zhu, H. Shu, J. Liang, L. Luo, and J. L. Coatrieux, Image analysis by discrete orthogonal racah moments, in Proc. Int. Conf. Image Analysis and Recognition, 2005, pp. 524–531.
|
[26] |
B. Xiao, G. Y. Wang, and W. S. Li, " Radial shifted legendre moments for image analysis and invariant image recognition,” Image and Vision Computing, vol. 32, no. 12, pp. 994–1006, 2014. doi: 10.1016/j.imavis.2014.09.002
|
[27] |
Y. Chen and X. H. Xu, " Supervised orthogonal discriminant subspace projects learning for face recognition,” Neural Networks, vol. 50, no. 2, pp. 33, 2014.
|
[28] |
B. Xiao, J. F. Ma, and X. Wang, " Image analysis by bessel-fourier moments,” Pattern Recognition, vol. 43, no. 8, pp. 2620–2629, 2010. doi: 10.1016/j.patcog.2010.03.013
|