IEEE/CAA Journal of Automatica Sinica
Citation: | Aye Aye Than and Junmin Wang, "Stabilization of the Cascaded ODE-Schrödinger Equations Subject to Observation With Time Delay," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1027-1035, June 2019. doi: 10.1109/JAS.2019.1911588 |
[1] |
B. B. Ren, J. M. Wang, and M. Krstic, " Stabilization of an ODESchrödinger cascade,” Syst. Control Lett., vol. 62, no. 6, pp. 503–510, Jun. 2013.
|
[2] |
S. Tang and C. Xie, " State and output feedback boundary control for a coupled PDE-ODE system,” Syst. Control Lett., vol. 60, no. 8, pp. 540–545, Aug. 2011.
|
[3] |
J. M. Wang, J. J. Liu, B. Ren, and J. Chen, " Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance,” Automatica, vol. 52, pp. 23–34, Feb. 2015. doi: 10.1016/j.automatica.2014.10.117
|
[4] |
G. A. Susto and M. Krstic, " Control of PDE-ODE cascades with Neumann interconnections,” J. Franklin Institute, vol. 347, no. 1, pp. 284–314, Feb. 2010. doi: 10.1016/j.jfranklin.2009.09.005
|
[5] |
J. M. Wang, B. Z. Guo, and M. Krstic, " Wave equation stabilization by delays equal to even multiples of the wave propagation time,” SIAM J. Control and Optimization, vol. 49, no. 2, pp. 517–554, Mar. 2011. doi: 10.1137/100796261
|
[6] |
J. M. Wang, X. W. Lv, and D. X. Zhao, " Exponential stability and spectral analysis of the pendulum system under position and delayed position feedbacks,” Internat. J. Control, vol. 84, no. 5, pp. 904–915, May 2011. doi: 10.1080/00207179.2011.582886
|
[7] |
M. Krstic, " Compensating a string PDE in the actuation or sensing path of an unstable ODE,” IEEE Trans. Automatic Control, vol. 54, no. 6, pp. 1362–1368, May 2009. doi: 10.1109/TAC.2009.2015557
|
[8] |
B. Z. Guo, C. Z. Xu, and H. Hammouri, " Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation,” ESAIM:Control,Opti. Cal. Variations, vol. 18, no. 1, pp. 22–35, Jan. 2012. doi: 10.1051/cocv/2010044
|
[9] |
K. Y. Yang, X. Ren, and J. Zhang, " Output feedback stabilization of an unstable wave equation with observations subject to time delay,” J. Syst. Sci. Complex, vol. 29, no. 1, pp. 99–118, Feb. 2016. doi: 10.1007/s11424-016-5169-2
|
[10] |
H. Y. Zhu, H. N. Wu, and J. W. Wang, " H∞ disturbance attenuation for nonlinear coupled parabolic PDE-ODE systems via fuzzy-model-based control approach,” IEEE Trans. Syst.,Man,Cybernetics:Systems, vol. 47, no. 8, pp. 1814–1825, Aug. 2017. doi: 10.1109/TSMC.2016.2531701
|
[11] |
H. N. Wu, H. Y. Zhu, and J. W. Wang, " Observer-based H∞ sampleddata fuzzy control for a class of nonlinear parabolic PDE systems,” IEEE Trans. Fuzzy Systems, vol. 26, no. 2, pp. 454–473, Apr. 2018. doi: 10.1109/TFUZZ.2017.2686337
|
[12] |
H. N. Wu, H. Y. Zhu, and J. W. Wang, " H2 fuzzy control for a class of nonlinear coupled ODE-PDE with input constraint,” IEEE Trans. Fuzzy Systems, vol. 23, no. 3, pp. 593–604, Jun. 2015. doi: 10.1109/TFUZZ.2014.2318180
|
[13] |
J. H. Su, " Further result on the robust stability of linear systems with a single time delay,” Syst. Control Letters, vol. 23, no. 5, pp. 375–379, Nov. 1994. doi: 10.1016/0167-6911(94)90071-X
|
[14] |
W. Michiels and S. I. Niculescu, " On the delay sensitivity of Smith predictors. Time delay systems: theory and control,” Internat. J. Systems Sci, vol. 34, pp. 8–9, Jul. 2003.
|
[15] |
I. Gumowski and C. Mira, Optimization in the Control Theory and Practice, Cambridge University Press: 1968.
|
[16] |
K. Y. Yang and J. M. Wang, " Pointwise stabilisation of a string with time delay in the observation,” Internat. J. Control, vol. 90, no. 11, pp. 2394–2405, Sept. 2017. doi: 10.1080/00207179.2016.1250159
|
[17] |
R. Datko, J. Lagnese, and P. M. Polis, " An example on the effect of time delays in boundary feedback stabilization of wave equations,” SIAM J. Control and Optimization, vol. 24, no. 1, pp. 152–156, Jan. 1986. doi: 10.1137/0324007
|
[18] |
R. Datko, " Two examples of ill-posedness with respect to time delays revisited,” IEEE Trans. Automatic Control, vol. 42, no. 4, pp. 511–515, Apr. 1997. doi: 10.1109/9.566660
|
[19] |
M. Krstic, " Control of an unstable reaction-diffusion PDE with long input delay,” Syst. Control Lett, vol. 58, no. 10–11, pp. 773–782, Sept. 2009. doi: 10.1016/j.sysconle.2009.08.006
|
[20] |
B. Z. Guo and K. Y. Yang, " Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation,” Automatica, vol. 45, no. 6, pp. 1468–1475, Jun. 2009. doi: 10.1016/j.automatica.2009.02.004
|
[21] |
I. Karafyllis and M. Krstic, " Predictor feedback for delay systems: Implementations and approximations”, Mathematics, Systems & Control: Foundations & Applications, Birkhäuser: 2017.
|
[22] |
W. H. Fleming, Future Directions in Control Theory: A Mathematical Perspective, SIAM Reports Issues Math. Sci., SIAM, Philadelphia: 1988.
|
[23] |
K. Y. Yang and J. M. Wang, " Pointwise feedback stabilization of an Euler-Bernoulli beam in observations with time delay”, ESAIM: Control, Optimisation and Calculus of Variations, vol. 25, Article no. 4, 23 pages, Mar. 2019.
|
[24] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: 1983.
|
[25] |
B. Z. Guo and J. M. Wang, Control of Wave and Beam PDEs: The Riesz Basis Approach, Springer, Switzerland: 2019.
|
[26] |
F. R. Curtain, " The Salamon-Weiss class of wellposed infinite dimensional linear systems: A survey,” IMA J. Mathematical Control and Information, vol. 14, no. 2, pp. 207–223, Jan. 1997. doi: 10.1093/imamci/14.2.207
|
[27] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories Ⅱ, Abstract Hyperbolic-Link Systems Over a Finite Time Horizon, Cambridge, Cambridge Univ. Press: 2000.
|
[28] |
B. Z. Guo, " Riesz basis approach to the stabilization of a flexible beam with a tip mass,” SIAM J. Control and Optimization, vol. 39, pp. 1736–1747, 2001. doi: 10.1137/S0363012999354880
|
[29] |
B. Z. Guo, " Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients,” SIAM J. Control and Optimization, vol. 40, pp. 1905–1923, 2002. doi: 10.1137/S0363012900372519
|