A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 4
Jul.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Hongchen Chen, Xie Zhang, Shaoyi Du, Zongze Wu and Nanning Zheng, "A Correntropy-based Affine Iterative Closest Point Algorithm for Robust Point Set Registration," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 981-991, July 2019. doi: 10.1109/JAS.2019.1911579
Citation: Hongchen Chen, Xie Zhang, Shaoyi Du, Zongze Wu and Nanning Zheng, "A Correntropy-based Affine Iterative Closest Point Algorithm for Robust Point Set Registration," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 981-991, July 2019. doi: 10.1109/JAS.2019.1911579

A Correntropy-based Affine Iterative Closest Point Algorithm for Robust Point Set Registration

doi: 10.1109/JAS.2019.1911579
Funds:  This work was supported in part by the National Natural Science Foundation of China (61627811, 61573274, 61673126, U1701261)
More Information
  • The iterative closest point (ICP) algorithm has the advantages of high accuracy and fast speed for point set registration, but it performs poorly when the point set has a large number of noisy outliers. To solve this problem, we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers. Firstly, we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model, which can avoid the influence of outliers. To maximize the objective function, we then propose a robust affine ICP algorithm. At each iteration of this new algorithm, we set up the index mapping of two point sets according to the known transformation, and then compute the closed-form solution of the new transformation according to the known index mapping. Similar to the traditional ICP algorithm, our algorithm converges to a local maximum monotonously for any given initial value. Finally, the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.

     

  • loading
  • [1]
    B. S. Reddy and B. N. Chatterji, " An fft-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Processing, vol. 5, no. 8, pp. 1266–1271, 1996. doi: 10.1109/83.506761
    [2]
    H. Li, B. Manjunath, and S. K. Mitra, " A contour-based approach to multisensor image registration,” IEEE Trans. Image Processing, vol. 4, no. 3, pp. 320–334, 1995. doi: 10.1109/83.366480
    [3]
    J. Ma, J. Zhao, and A. L. Yuille, " Non-rigid point set registration by preserving global and local structures,” IEEE Trans. Image Processing, vol. 25, no. 1, pp. 53–64, 2016. doi: 10.1109/TIP.2015.2467217
    [4]
    P. J. Besl and N. D. McKay, " A method for registration of 3-d shapes,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992. doi: 10.1109/34.121791
    [5]
    Z. Zhang, " Iterative point matching for registration of free-form curves and surfaces,” Int. J. of Computer Vision, vol. 13, no. 2, pp. 119–152, 1994. doi: 10.1007/BF01427149
    [6]
    Y. Chen and G. Medioni, " Object modelling by registration of multiple range images,” Image and Vision Computing, vol. 10, no. 3, pp. 145–155, 1992. doi: 10.1016/0262-8856(92)90066-C
    [7]
    X. Lu, A. K. Jain, and D. Colbry, " Matching 2.5d face scans to 3d models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 31–43, 2006. doi: 10.1109/TPAMI.2006.15
    [8]
    W. Wang, D. Zhang, Y. Zhang, J. Li, and X. Gu, " Robust spatial matching for object retrieval and its parallel implementation on GPU,” IEEE Trans. Multimedia, vol. 13, no. 6, pp. 1308–1318, 2011. doi: 10.1109/TMM.2011.2165053
    [9]
    Y. Gao, M. Wang, D. Tao, R. Ji, and Q. Dai, " 3-D object retrieval and recognition with hypergraph analysis,” IEEE Trans. Image Processing, vol. 21, no. 9, pp. 4290–4303, 2012. doi: 10.1109/TIP.2012.2199502
    [10]
    H. Xie, Y. Zhang, J. Tan, L. Guo, and J. Li, " Contextual query expansion for image retrieval,” IEEE Trans. Multimedia, vol. 16, no. 4, pp. 1104–1114, 2014. doi: 10.1109/TMM.2014.2305909
    [11]
    X. Zhao, N. Wang, Y. Zhang, S. Du, Y. Gao, and J. Sun, " Beyond pairwise matching: person reidentification via high-order relevance learning,” IEEE Trans. Neural Networks and Learning Systems, 2017.
    [12]
    A. Almhdie, C. Léger, M. Deriche, and R. Lédée, " 3D registration using a new implementation of the icp algorithm based on a comprehensive lookup matrix: Application to medical imaging,” Pattern Recognition Letters, vol. 28, no. 12, pp. 1523–1533, 2007. doi: 10.1016/j.patrec.2007.03.005
    [13]
    R. M. Rangayyan, F. J. Ayres, and J. L. Desautels, " A review of computer-aided diagnosis of breast cancer: toward the detection of subtle signs,” J. Franklin Institute, vol. 344, no. 3–4, pp. 312–348, 2007. doi: 10.1016/j.jfranklin.2006.09.003
    [14]
    S. Ying, G. Wu, Q. Wang, and D. Shen, " Hierarchical unbiased graph shrinkage (hugs): a novel groupwise registration for large data set,” NeuroImage, vol. 84, pp. 626–638, 2014. doi: 10.1016/j.neuroimage.2013.09.023
    [15]
    S. Ying, Y. Wang, Z. Wen, and Y. Lin, " Nonlinear 2D shape registration via thin-plate spline and lie group representation,” Neurocomputing, vol. 195, pp. 129–136, 2016. doi: 10.1016/j.neucom.2015.07.144
    [16]
    J. Zhang, Y. Gao, Y. Gao, B. C. Munsell, and D. Shen, " Detecting anatomical landmarks for fast alzheimers disease diagnosis,” IEEE Trans. Medical Imaging, vol. 35, no. 12, pp. 2524–2533, 2016. doi: 10.1109/TMI.2016.2582386
    [17]
    H. Zha, M. Ikuta, and T. Hasegawa, " Registration of range images with different scanning resolutions,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, vol. 2, 2000, pp. 1495–1500.
    [18]
    T. Zinßer, J. Schmidt, and H. Niemann, " Point set registration with integrated scale estimation,” in Proc. 8th Int. Conf. Pattern Recognition and Image Processing, vol. 116, 2005, pp. 119.
    [19]
    S. Du, N. Zheng, L. Xiong, S. Ying, and J. Xue, " Scaling iterative closest point algorithm for registration of m-d point sets,” J. Visual Communication and Image Representation, vol. 21, no. 5, pp. 442–452, 2010.
    [20]
    S. Du, N. Zheng, S. Ying, and J. Liu, " Affine iterative closest point algorithm for point set registration,” Pattern Recognition Letters, vol. 31, no. 9, pp. 791–799, 2010. doi: 10.1016/j.patrec.2010.01.020
    [21]
    G. Dalley and P. Flynn, " Pair-wise range image registration: a study in outlier classification,” Computer Vision and Image Understanding, vol. 87, no. 1, pp. 104–115, 2002.
    [22]
    A. Myronenko and X. Song, " Point set registration: coherent point drift,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp. 2262–2275, 2010. doi: 10.1109/TPAMI.2010.46
    [23]
    H. Zhang, O. Hall-Holt, and A. Kaufman, " Range image registration via probability field,” in Proc. Int. Conf. Computer Graphics. IEEE, 2004, pp. 546–552.
    [24]
    B. Jensen and R. Siegwart, " Scan alignment with probabilistic distance metric,” in Proc. Int. Conf. IEEE/RSJ Intelligent Robots and Systems(IROS), vol. 3. IEEE, 2004, pp. 2191–2196.
    [25]
    S. Du, J. Liu, C. Zhang, J. Zhu, and K. Li, " Probability iterative closest point algorithm for m-d point set registration with noise,” Neurocomputing, vol. 157, pp. 187–198, 2015. doi: 10.1016/j.neucom.2015.01.019
    [26]
    W. Tao and K. Sun, " Robust point sets matching by fusing feature and spatial information using nonuniform gaussian mixture models,” IEEE Trans. Image Processing, vol. 24, no. 11, pp. 3754–3767, 2015. doi: 10.1109/TIP.2015.2449559
    [27]
    M. H. Moghari and P. Abolmaesumi, " Point-based rigid-body registration using an unscented kalman filter,” IEEE Trans. Medical Imaging, vol. 26, no. 12, pp. 1708–1728, 2007. doi: 10.1109/TMI.2007.901984
    [28]
    R. Sandhu, S. Dambreville, and A. Tannenbaum, " Point set registration via particle filtering and stochastic dynamics,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 8, pp. 1459–1473, 2010. doi: 10.1109/TPAMI.2009.142
    [29]
    L. Li, M. Yang, C. Wang, and B. Wang, " Rigid point set registration based on cubature Kalman filter and its application in intelligent vehicles,” IEEE Trans. Intelligent Transportation Systems, vol. 19, no. 6, pp. 1754–1765, 2018. doi: 10.1109/TITS.2017.2735362
    [30]
    W. Liu, P. P. Pokharel, and J. C. Príncipe, " Correntropy: properties and applications in non-gaussian signal processing,” IEEE Trans. Signal Processing, vol. 55, no. 11, pp. 5286–5298, 2007. doi: 10.1109/TSP.2007.896065
    [31]
    R. He, B. -G. Hu, W. -S. Zheng, and X. -W. Kong, " Robust principal component analysis based on maximum correntropy criterion,” IEEE Trans. Image Processing, vol. 20, no. 6, pp. 1485–1494, 2011. doi: 10.1109/TIP.2010.2103949
    [32]
    X. -X. Li, D. -Q. Dai, X. -F. Zhang, and C. -X. Ren, " Structured sparse error coding for face recognition with occlusion,” IEEE Trans. Image Processing, vol. 22, no. 5, pp. 1889–1900, 2013. doi: 10.1109/TIP.2013.2237920
    [33]
    E. Hasanbelliu, L. S. Giraldo, and J. C. Principe, " Information theoretic shape matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 36, no. 12, pp. 2436–2451, 2014. doi: 10.1109/TPAMI.2014.2324585
    [34]
    B. Chen, L. Xing, H. Zhao, N. Zheng, and J. C. Príncipe, " Generalized correntropy for robust adaptive filtering,” IEEE Trans. Signal Processing, vol. 13, no. 64, pp. 3376–3387, 2015.
    [35]
    G. Wang, N. Li, and Y. Zhang, " Maximum correntropy unscented kalman and information filters for non-Gaussian measurement noise,” J. Franklin Institute, vol. 354, no. 18, pp. 8659–8677, 2017. doi: 10.1016/j.jfranklin.2017.10.023
    [36]
    B. Jian and B. C. Vemuri, " Robust point set registration using Gaussian mixture models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1633–1645, 2011. doi: 10.1109/TPAMI.2010.223
    [37]
    B. Chen and J. C. Príncipe, " Maximum correntropy estimation is a smoothed map estimation,” IEEE Signal Processing Letters, vol. 19, no. 8, pp. 491–494, 2012. doi: 10.1109/LSP.2012.2204435
    [38]
    B. Chen, L. Xing, J. Liang, N. Zheng, and J. C. Principe, " Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion,” IEEE Signal Processing Letters, vol. 21, no. 7, pp. 880–884, 2014. doi: 10.1109/LSP.2014.2319308
    [39]
    Z. Wu, S. Peng, B. Chen, and H. Zhao, " Robust hammerstein adaptive filtering under maximum correntropy criterion,” Entropy, vol. 17, no. 10, pp. 7149–7166, 2015.
    [40]
    B. Chen, J. Wang, H. Zhao, N. Zheng, and J. C. Príncipe, " Convergence of a fixed-point algorithm under maximum correntropy criterion,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1723–1727, 2015. doi: 10.1109/LSP.2015.2428713
    [41]
    M. Greenspan and M. Yurick, " Approximate kd tree search for efficient icp,” in Proc. 4th Int. Conf. 3-D Digital Imaging and Modeling (3DIM). IEEE, 2003, pp. 442–448.
    [42]
    C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, " The quickhull algorithm for convex hulls,” ACM Trans. Mathematical Software (TOMS), vol. 22, no. 4, pp. 469–483, 1996. doi: 10.1145/235815.235821
    [43]
    L. J. Latecki, R. Lakamper, and T. Eckhardt, " Shape descriptors for non-rigid shapes with a single closed contour,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1. IEEE, 2000, pp. 424–429.
    [44]
    M. Levoy, J. Gerth, B. Curless, and K. Pull, " The stanford 3D scanning repository,” [Online]. Available: http://www-graphics.stanford.edu/data/3dscanrep, 2005.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (2100) PDF downloads(67) Cited by()

    Highlights

    • Correntropy is introduced to our algorithm to suppress the outliers and noises.
    • The one-to-one index mapping is employed for fast speed.
    • The closed-form solution of our algorithm is presented to reduce the run-time.
    • Our algorithm is independent of feature extraction and can be used with other methods.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return