IEEE/CAA Journal of Automatica Sinica
Citation: | Yinghua Yang, Xiang Shi, Xiaozhi Liu and Hongru Li, "A Novel MDFA-MKECA Method With Application to Industrial Batch Process Monitoring," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1446-1454, Sept. 2020. doi: 10.1109/JAS.2019.1911555 |
[1] |
Z. Ge, Z. Song, and F. Gao, “Review of recent research on data-based process monitoring,” Industrial &Engineering Chemistry Research, vol. 52, no. 10, pp. 3543–3562, 2013.
|
[2] |
Y. Gao, X. Wang, Z. Wang, and L. Zhao, “External analysis and moving window loop based monitoring for a class of multi-mode timevarying process,” IEEE/CAA J. Autom. Sinica, pp. 1–10, 2017. doi: 10.1109/JAS.2017.7510703
|
[3] |
H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary Reviews Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010.
|
[4] |
K. X. Peng, M. A. Liang, and Z. Kai, “Review of quality-related fault detection and diagnosis techniques for complex industrial processes,” Acta Automatica Sinica, vol. 43, no. 3, pp. 349–365, 2017.
|
[5] |
N. A. A. Majid, M. P. Taylor, J. J. J. Chen, M. A. Stam, A. Mulder, and B. R. Young, “Aluminium process fault detection by multiway principal component analysis,” Control Engineering Practice, vol. 19, no. 4, pp. 367–379, 2011. doi: 10.1016/j.conengprac.2010.12.005
|
[6] |
S. Stubbs, J. Zhang, and J. Morris, “Multiway interval partial least squares for batch process performance monitoring,” Industrial &Engineering Chemistry Research, vol. 52, no. 35, pp. 12399–12407, 2013.
|
[7] |
G. Hui and L. Hongguang, “On-line batch process monitoring with improved multi-way independent component analysis,” Chinese J. Chemical Engineering, vol. 21, no. 3, pp. 263–270, 2013. doi: 10.1016/S1004-9541(13)60485-4
|
[8] |
J.-M. Lee, C. Yoo, and I.-B. Lee, “Fault detection of batch processes using multiway kernel principal component analysis,” Computers &chemical engineering, vol. 28, no. 9, pp. 1837–1847, 2004.
|
[9] |
J. Mori and J. Yu, “Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-gaussian latent subspace projection approach,” J. Process Control, vol. 24, no. 1, pp. 57–71, 2014. doi: 10.1016/j.jprocont.2013.10.017
|
[10] |
L. Di, Z. Xiong, and X. Yang, “Nonlinear process modeling and optimization based on multiway kernel partial least squares model,” in Proc. IEEE Winter Simulation Conf., 2008, pp. 1645–1651.
|
[11] |
P. Chang, P. Wang, and X. Gao, “Microbial pharmaceutical process monitoring based on projection kernel entropy component,” Information and Control, vol. 43, no. 4, pp. 490–494, 2014.
|
[12] |
T. Kourti, “Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions,” J. Chemometrics, vol. 17, no. 1, pp. 93–109, 2003. doi: 10.1002/(ISSN)1099-128X
|
[13] |
P. Nomikos and J. F. MacGregor, “Multivariate spc charts for monitoring batch processes,” Technometrics, vol. 37, no. 1, pp. 41–59, 1995. doi: 10.1080/00401706.1995.10485888
|
[14] |
H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word recognition,” IEEE Trans. Acoustics,Speech,and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978. doi: 10.1109/TASSP.1978.1163055
|
[15] |
K. Zhang, K. Peng, and J. Dong, “A common and individual feature extraction-based multimode process monitoring method with application to the finishing mill process,” IEEE Trans. Industrial Informatics, vol. 14, no. 11, pp. 4841–4850, 2018.
|
[16] |
K. Zhang, H. Hao, Z. Chen, S. X. Ding, and K. Peng, “A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches,” J. Process Control, vol. 33, pp. 112–126, 2015. doi: 10.1016/j.jprocont.2015.06.007
|
[17] |
Y. J. Jang and S. W. Kim, “An estimation of a billet temperature during reheating furnace operation,” Int. J. Control,Automation,and Systems, vol. 5, no. 1, pp. 43–50, 2007.
|
[18] |
C. Miao, H.-G. Chen, X. Li, and W. Bin, “Total heat exchange factor based on non-gray radiation properties of gas in reheating furnace,” J. Iron and Steel Research,International, vol. 16, no. 3, pp. 27–63, 2009. doi: 10.1016/S1006-706X(09)60039-X
|
[19] |
Q. P. He and J. Wang, “Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes,” AIChE J., vol. 57, no. 1, pp. 107–121, 2011. doi: 10.1002/aic.12247
|
[20] |
Z. Jj, “Thermodynamic entropy and information entropy,” J. Wuhan University of Science and Technology (Natural Science Edition)
|
[21] |
D. Aguado, A. Ferrer, J. Ferrer, and A. Seco, “Multivariate spc of a sequencing batch reactor for wastewater treatment,” Chemometrics and Intelligent Laboratory Systems, vol. 85, no. 1, pp. 82–93, 2007. doi: 10.1016/j.chemolab.2006.05.003
|
[22] |
S. Wold, N. Kettaneh, H. Fridén, and A. Holmberg, “Modelling and diagnostics of batch processes and analogous kinetic experiments,” Chemometrics and Intelligent Laboratory Systems, vol. 44, no. 1–2, pp. 331–340, 1998. doi: 10.1016/S0169-7439(98)00162-2
|
[23] |
Y. Yinghua, L. Huaqing, L. Chenlong, Q. Shukai, and C. Xiaobo, “Kernel entropy component analysis based process monitoring method with process subsystem division,” in Proc. 27th IEEE Conf. Control and Decision, 2015, pp. 2684–2688.
|