IEEE/CAA Journal of Automatica Sinica
Citation: | Zhe Chen, Jing Zhang and Dacheng Tao, "Progressive LiDAR Adaptation for Road Detection," IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 693-702, May 2019. doi: 10.1109/JAS.2019.1911459 |
[1] |
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431-3440.
|
[2] |
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Semantic image segmentation with deep convolutional nets and fully connected crfs, " in ICLR, 2015.[Online]. Available: http://arXiv.org/abs/1412.7062
|
[3] |
P. Y. Shinzato, D. F. Wolf, and C. Stiller, "Road terrain detection: Avoiding common obstacle detection assumptions using sensor fusion, " in Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings. IEEE, 2014, pp. 687-692.
|
[4] |
T. Kühnl, F. Kummert, and J. Fritsch, "Spatial ray features for real-time ego-lane extraction, " in VEHIT, IEEE, 2012, pp. 288-293.
|
[5] |
L. Xiao, B. Dai, D. Liu, T. Hu, and T. Wu, "Crf based road detection with multi-sensor fusion, " in Proceeding of the Intelligent Vehicles Symposium (Ⅳ). IEEE, 2015, pp. 192-198.
|
[6] |
C. C. T. Mendes, V. Frémont, and D. F. Wolf, "Vision-based road detection using contextual blocks, " arXiv: 1509.01122, 2015.
|
[7] |
D. Levi, N. Garnett, E. Fetaya, and I. Herzlyia, "Stixelnet: A deep convolutional network for obstacle detection and road segmentation." BMVC, 2015.
|
[8] |
C. C. T. Mendes, V. Frmont, and D. F. Wolf, "Exploiting fully convolutional neural networks for fast road detection, " in Proceeding of the IEEE International Conference on Robotics and Automation (ICRA), 2016.
|
[9] |
R. Mohan, "Deep deconvolutional networks for scene parsing, " arXiv/1411.4101, 2014.
|
[10] |
Z. Chen and Z. Chen, "Rbnet: A deep neural network for unified road and road boundary detection, " in Proceedings of the International Conference on Neural Information Processing, Springer, 2017, pp. 677-687.
|
[11] |
L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, "Lidar-camera fusion for road detection using fully convolutional neural networks, " Proceedings of the IEEE Robotics and Autonomous Systems, 2018.
|
[12] |
L. Caltagirone, S. Scheidegger, L. Svensson, and M. Wahde, "Fast lidar-based road detection using fully convolutional neural networks, " in Proceedings of the IEEE Intelligent Vehicles Symposium (Ⅳ), IEEE, 2017, pp. 1019-1024.
|
[13] |
L. Chen, J. Yang, and H. Kong, "Lidar-histogram for fast road and obstacle detection, " in Proceedings of the IEEE Robotics and Automation, IEEE, 2017, pp. 1343-1348.
|
[14] |
Lidar.[Online]. Available: https://en.wikipedia.org/wiki/Lidar
|
[15] |
L. Xiao, R. Wang, B. Dai, Y. Fang, D. Liu, and T. Wu, "Hybrid conditional random field based camera-lidar fusion for road detection, " Information Sciences, 2017.
|
[16] |
A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? the kitti vision benchmark suite, " in Proceeding of the Conference on Computer Vision and Pattern Recognition, 2012.
|
[17] |
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The kitti dataset, " International Journal of Robotics Research, 2013. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231044522/
|
[18] |
L. Qi, M. Zhou, and W. Luan, "A dynamic road incident information delivery strategy to reduce urban traffic congestion, " IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 5, pp. 934-945, 2018. doi: 10.1109/JAS.2018.7511165
|
[19] |
L. Chen, X. Hu, W. Tian, H. Wang, D. Cao, and F. Wang, "Parallel planning: a new motion planning framework for autonomous driving, " IEEE/CAA Journal of Automatica Sinica, pp. 1-12, 2018. doi: 10.1109/JAS.2018.7511186
|
[20] |
H. Kong, J.-Y. Audibert, and J. Ponce, "Vanishing point detection for road detection, " in Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 2009, pp. 96-103.
|
[21] |
Z. Chen, X. You, B. Zhong, J. Li, and D. Tao, "Dynamically modulated mask sparse tracking, " IEEE transactions on cybernetics, vol. 47, no. 11, pp. 3706-3718, 2017. doi: 10.1109/TCYB.2016.2577718
|
[22] |
Z. Chen, J. Li, Z. Chen, and X. You, "Generic pixel level object tracker using bi-channel fully convolutional network, " in Proceedings of the International Conference on Neural Information Processing, Springer, 2017, pp. 666-676.
|
[23] |
Z. Chen, S. Huang, and D. Tao, "Context refinement for object detection, " in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 71-86.
|
[24] |
Y. Xing, C. Lv, L. Chen, H. Wang, H. Wang, D. Cao, E. Velenis, and F.-Y. Wang, "Advances in vision-based lane detection: Algorithms, integration, assessment, and perspectives on acp-based parallel vision, " IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp. 645-661, 2018. doi: 10.1109/JAS.2018.7511063
|
[25] |
X. Han, J. Lu, C. Zhao, S. You, and H. Li, "Semi-supervised and weakly-supervised road detection based on generative adversarial networks, " IEEE Signal Processing Letters, 2018.
|
[26] |
J. Munoz-Bulnes, C. Fernandez, I. Parra, D. Fernández-Llorca, and M. A. Sotelo, "Deep fully convolutional networks with random data augmentation for enhanced generalization in road detection, " in Proceedings of the International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2017, pp. 366-371.
|
[27] |
D. Munoz, J. A. Bagnell, and M. Hebert, "Stacked hierarchical labeling, " in Proceedings of the European Conference on Computer Vision (ECCV), Springer, 2010, pp. 57-70.
|
[28] |
M. Aly, "Real time detection of lane markers in urban streets, " in Proceedings of Intelligent Vehicles Symposium, IEEE, 2008, pp. 7-12.
|
[29] |
A. Laddha, M. K. Kocamaz, L. E. Navarro-Serment, and M. Hebert, "Map-supervised road detection, " in Proceedings of Intelligent Vehicles Symposium, IEEE, 2016, pp. 118-123.
|
[30] |
J. M. Alvarez, M. Salzmann, and N. Barnes, "Learning appearance models for road detection, " in Proceedings of Intelligent Vehicles Symposium, IEEE, 2013, pp. 423-429.
|
[31] |
S. Zhou, J. Gong, G. Xiong, H. Chen, and K. Iagnemma, "Road detection using support vector machine based on online learning and evaluation, " in Proceedings of Intelligent Vehicles Symposium, IEEE, 2010, pp. 256-261.
|
[32] |
L. Xiao, B. Dai, D. Liu, D. Zhao, and T. Wu, "Monocular road detection using structured random forest, " International Journal of Advanced Robotic Systems, vol. 13, no. 3, 2016.
|
[33] |
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS, " IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. http://d.old.wanfangdata.com.cn/Periodical/ckjs201811008
|
[34] |
C. Liang-Chieh, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, "Semantic image segmentation with deep convolutional nets and fully connected crfs, " in ICLR, 2015.
|
[35] |
F. Yu and V. Koltun, "Multi-scale context aggregation by dilated convolutions, " arXiv: 1511.07122, 2015.
|
[36] |
G. Lin, A. Milan, C. Shen, and I. Reid, "Refinenet: Multi-path refinement networks for high-resolution semantic segmentation, " in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
|
[37] |
F. Yu, V. Koltun, and T. Funkhouser, "Dilated residual networks, " in Proceedings of Computer Vision and Pattern Recognition, vol. 1, 2017.
|
[38] |
M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun, "Multinet: Real-time joint semantic reasoning for autonomous driving, " arXiv: 1612.07695, 2016.
|
[39] |
G. L. Oliveira, W. Burgard, and T. Brox, "Efficient deep methods for monocular road segmentation, " in IROS, 2016.
|
[40] |
O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation, " in Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015, pp. 234-241.
|
[41] |
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778.
|
[42] |
H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene parsing network, " in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2881-2890.
|
[43] |
J. Fritsch, T. Kuehnl, and A. Geiger, "A new performance measure and evaluation benchmark for road detection algorithms, " in ITSC, 2013.
|
[44] |
N. Garnett, S. Silberstein, S. Oron, E. Fetaya, U. Verner, A. Ayash, V. Goldner, R. Cohen, K. Horn, and D. Levi, "Real-time category-based and general obstacle detection for autonomous driving, " in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 198-205.
|
[45] |
P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell, "Understanding convolution for semantic segmentation, " in Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, pp. 1451-1460.
|
[46] |
G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder, "The mapillary vistas dataset for semantic understanding of street scenes, " in Proceedings of the International Conference on Computer Vision (ICCV), 2017. [Online]. Available: https://www.mapillary.com/dataset/vistas
|