IEEE/CAA Journal of Automatica Sinica
Citation: | Chengcai Leng, Hai Zhang, Guorong Cai, Irene Cheng and Anup Basu, "Graph Regularized |
[1] |
G. F. Lu, Y. Wang, and J. Zou, "Low-rank matrix factorization with adaptive graph regularizer, " IEEE Transactions on Image Processing, vol. 25, no. 5, pp. 2205-2196, 2016. http://dl.acm.org/citation.cfm?id=2930749
|
[2] |
Z. Y. Zhang, and K. K. Zhao, "Low-rank matrix approximation with manifold regularization, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1717-1729, 2013. doi: 10.1109/TPAMI.2012.274
|
[3] |
X. Luo, M. C. Zhou, Y. N. Xia, and Q. S. Zhu, "An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems, " IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1273-1284, 2014. doi: 10.1109/TII.2014.2308433
|
[4] |
F. H. Shang, L. C. Jiao, F. Wang, "Graph dual regularization non-negative matrix factorization for co-clustering, " Pattern Recognition, vol. 45, no. 6, pp. 2237-2250, 2012. doi: 10.1016/j.patcog.2011.12.015
|
[5] |
D. Wang, X. B. Gao, X. M. Wang, "Semi-supervised nonnegative matrix factorization via constraint propagation, " IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 233-244, 2016. doi: 10.1109/TCYB.2015.2399533
|
[6] |
L. He, N. Ray, Y. S. Guan, and H. Zhang, "Fast large-scale spectral clustering via explicit feature mapping, " IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2018.2794998, 2018.
|
[7] |
X. Q. Lu, H. Wu, Y. Yuan, P. K. Yan, and X. L. Li, "Manifold Regularized Sparse NMF for Hyperspectral Unmixing, " IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 5, pp. 2815-2826, 2013. doi: 10.1109/TGRS.2012.2213825
|
[8] |
W. He, H. Y. Zhang, and L. P. Zhang, "Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing, " IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 9, pp. 4267-4279, 2016. doi: 10.1109/JSTARS.2016.2519498
|
[9] |
Y. Ma, C. Li, X. G. Mei, C. Y. Liu, J. Y. Ma, "Robust sparse hyperspectral unmixing with l2, 1 norm, " IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 3, pp. 1227-1239, 2017. doi: 10.1109/TGRS.2016.2616161
|
[10] |
F. Fan, Y. Ma, C. Li, X. G. Mei, J. Huang, J. Y. Ma, "Hyperspectral image denoising with superpixel segmentation and low-rank representation, " Information Sciences, vol. 397, pp. 48-68, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33cc750f2d1d88ae9316d4e4569a86bb
|
[11] |
Z. C. Li, J. Liu, and H. Q. Lu, "Structure preserving non-negative matrix factorization for dimensionality reduction, " Computer Vision and Image Understanding, vol. 117, no. 9, pp. 1175-1189, 2013. doi: 10.1016/j.cviu.2013.04.003
|
[12] |
Y. W. Lu, C. Yuan, W. W. Zhu, and X. L. Li, "Structurally incoherent low-rank nonnegative matrix factorization for image classification, " IEEE Transactions on Image Processing, vol. 27, no. 11, pp. 5248-5260, 2018. doi: 10.1109/TIP.2018.2855433
|
[13] |
X. Luo, M. C. Zhou, H. Leung, Y. N. Xia, Q. S. Zhu, Z. H. You, and S. Li, "An incremental-and-static-combined scheme for matrix-factorization- based collaborative filtering, " IEEE Transactions on Automation Science and Engineering, vol. 13, no. 1, pp. 333-343, 2016. doi: 10.1109/TASE.2014.2348555
|
[14] |
Y. X. Wang, and Y. J. Zhang, "Nonnegative matrix factorization: a comprehensive review, " IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 6, pp. 1336-1353, 2013. doi: 10.1109/TKDE.2012.51
|
[15] |
W. J. Hu, K. S. Choi, P. L. Wang, Y. L. Jiang, and S. T. Wang, "Convex nonnegative matrix factorization with manifold regularization, " Neural Networks, vol. 63, no. 1, pp. 94-103, 2015. http://www.sciencedirect.com/science/article/pii/S0893608014002615
|
[16] |
J. Tenenbaum, V. de Silva, and J. Langford, "A global geometric framework for nonlinear dimensionality reduction, " Science, vol. 290, no. 5500, pp. 2319-2323, 2000. doi: 10.1126/science.290.5500.2319
|
[17] |
S. Roweis, and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding, " Science, vol. 290, no. 5500, pp. 2323-2326, 2000. doi: 10.1126/science.290.5500.2323
|
[18] |
M. Belkin, and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering, " in Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 2001, vol. 14, pp. 585-591. http://www.numdam.org/item/M2AN_2009__43_4_721_0/
|
[19] |
D. Cai, X. F. He, and J. W. Han, "Isometric projection", in Proceeding of the National Conference on Artificial Intelligence, Vancouver, BC, Canada, 2007, vol. 1, pp. 528-533.
|
[20] |
A. Najafi, A. Joudaki, and E. Fatemizadeh, "Nonlinear dimensionality reduction via path-based isometric mapping, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 7, pp. 1452-1464, 2016. doi: 10.1109/TPAMI.2015.2487981
|
[21] |
D. D. Lee, and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization, " Nature, vol. 401, no. 6755, pp. 788-791, 1999. doi: 10.1038/44565
|
[22] |
L. Liu, A. L. Yang, W. J. Zhou, X. F. Zhang, M. R. Fei, and X. W. Tu, "Robust dataset classification approach based on neighbor searching and kernel fuzzy c-means, " IEEE/CAA Journal of Automatica Sinica, vol. 2, no. 3, pp. 235-247, 2015. doi: 10.1109/JAS.2015.7152657
|
[23] |
B. Jiang, H. F. Zhao, J. Tang, and B. Luo, "A sparse nonnegative matrix factorization technique for graph matching problems, " Pattern Recognition, vol. 47, no. 2, pp. 736-747, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=22fdc3d3ed3cfae2f48671328cd56a63
|
[24] |
Y. L. Tian, X. Li, K. F. Wang, and F.-Y. Wang, "Training and testing object detectors with virtual images, " IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 539-546, 2018. doi: 10.1109/JAS.2017.7510841
|
[25] |
J. Q. Gu, H. F. Hu, and H. X. Li, "Local robust sparse representation for face recognition with single sample per person, " IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 547-554, 2018. doi: 10.1109/JAS.2017.7510658
|
[26] |
W. He, H. Y. Zhang, L. P. Zhang, "Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing, " IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3909-3921, 2017. doi: 10.1109/TGRS.2017.2683719
|
[27] |
C. C. Leng, G. R. Cai, D. D. Yu, Z. Y. Wang, "Adaptive total-variation for non-negative matrix factorization on manifold, " Pattern Recognition Letters, vol. 98, pp. 68-74, 2017. doi: 10.1016/j.patrec.2017.08.027
|
[28] |
H. F. Liu, Z. H. Wu, X. L. Li, D. Cai, and T. S. Huang, "Constrained nonnegative matrix factorization for image representation, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1299-1311, 2012. doi: 10.1109/TPAMI.2011.217
|
[29] |
E. Hosseini-Asl, J. M. Zurada, G. Gimelfarb, A. El-Baz, "3-D lung segmentation by incremental constrained nonnegative matrix factorization, " IEEE Transactions on Biomedical Engineering, vol. 63, no. 5, pp. 952-963, 2016. doi: 10.1109/TBME.2015.2482387
|
[30] |
D. Cai, X. F. He, J. W. Han, and T. S. Huang, "Graph regularized nonnegative matrix factorization for data representation, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1548-1560, 2011. doi: 10.1109/TPAMI.2010.231
|
[31] |
R. H. Shang, W. B. Wang, R. Stolkin, and L. C. Jiao, "Non-negative spectral learning and sparse regression-based dual-graph regularized feature selection, " IEEE Transactions on Cybernetics, vol. 48, no. 2, pp. 793-806, 2018. doi: 10.1109/TCYB.2017.2657007
|
[32] |
X. Luo, M. C. Zhou, M. S. Shang, S. Li, and Y. N. Xia, "A novel approach to extracting non-negative latent factors from non-negative big sparse matrices, " IEEE Access, vol. 4, pp. 2649-2655, 2016. http://ieeexplore.ieee.org/document/7457202/
|
[33] |
X. Luo, J. P. Sun, Z. D. Wang, S. Li, and M. S. Shang "Symmetric and nonnegative latent factor models for undirected, high-dimensional, and sparse networks in industrial applications, " IEEE Transactions on Industrial Informatics, vol. 13, no. 6, pp. 3098-3107, 2017. doi: 10.1109/TII.2017.2724769
|
[34] |
X. Luo, M. C. Zhou, Y. N. Xia, Q. S. Zhu, A. C. Ammari, and A. Alabdulwahab, "Generating highly accurate predictions for missing QoS data via aggregating nonnegative latent factor models, " IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 3, pp. 524-537, 2016. doi: 10.1109/TNNLS.2015.2412037
|
[35] |
X. Luo, M. C. Zhou, S. Li, Y. N. Xia, Z. H. You, Q. S. Zhu, and H. Leung, "Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS Data, " IEEE Transactions on Cybernetics, vol. 48, no. 4, pp. 1216-1228, 2018. doi: 10.1109/TCYB.2017.2685521
|
[36] |
C. C. Leng, H. Zhang, and G. R. Cai, "A novel data clustering method based on smooth non-negative matrix factorization, " in Proceedings of the International Conference on Smart Multimedia, Toulon, France, 2018, pp. 406-414.
|
[37] |
D. D. Lee, H. S. Seung, "Algorithms for non-negative matrix factorization, " Advances in Neural Information Processing Systems, 2000, vol. 13, pp. 556-562. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1210.1190
|
[38] |
F. R. K. Chung, Spectral Graph Theory, Providence RI: American Mathematical Society, 1997.
|
[39] |
W. Xu, X. Liu, and Y. H. Gong, "Document clustering based on non-negative matrix factorization, " in Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2003, pp. 267-273.
|
[40] |
D. Cai, X. F. He, and J. W. Han, "Document clustering using locality preserving indexing, " IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 12, pp. 1624-1637, 2005. doi: 10.1109/TKDE.2005.198
|