IEEE/CAA Journal of Automatica Sinica
Citation: | Zhe Gao, "Stable Model Order Reduction Method for Fractional-Order Systems Based on Unsymmetric Lanczos Algorithm," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 485-492, Mar. 2019. doi: 10.1109/JAS.2019.1911399 |
[1] |
A. Narang, S. L. Shah, and T. Chen, "Continuous-time model identification of fractional-order models with time delays, " IET Control Theory & Applications, vol. 5, no. 7, pp. 900-912, 2011. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5766270
|
[2] |
D. Idiou, A. Charef, and A. Djouambi, "Linear fractional order system identification using adjustable fractional order differentiator, " IET Signal Processing, vol. 8, no. 4, pp. 398-409, 2014. doi: 10.1049/iet-spr.2013.0002
|
[3] |
M. S. Tavazoei, "From traditional to fractional PI control: a key for generalization, " IEEE Industrial Electronics Magazine, vol. 6, no. 3, pp. 41-51, 2012. doi: 10.1109/MIE.2012.2207818
|
[4] |
R. Magin, M. D. Ortigueira, I. Podlubny, and J. Trujillo, "On the fractional signals and systems, " Signal Processing, vol. 91, no. 3, pp. 350-371, 2015. http://d.old.wanfangdata.com.cn/Periodical/wlxb201617003
|
[5] |
C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and D. V. Feliu, Fractional-order Systems and Controls——Fundamentals and Applications, Springer-Verlag, London, 2010.
|
[6] |
S. Victor, R. Malti, H. Garnier, and A. Oustaloup, "Parameter and differentiation order estimation in fractional models, " Automatica, vol 49, no. 4, pp. 926-935, 2013. doi: 10.1016/j.automatica.2013.01.026
|
[7] |
L. Feng, "Parameter independent model order reduction, " Mathematics and Computers in Simulation, vol. 68, no. 3, pp. 221-234, 2005. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028002820/
|
[8] |
R. W. Freund, "Krylov-subspace methods for reduced-order modeling in circuit simulation, " Journal of Computational and Applied Mathematics, vol. 123, no. 1-2, pp. 395-421, 2000. doi: 10.1016/S0377-0427(00)00396-4
|
[9] |
Z. Bai, "Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, " Applied Numerical Mathematics, vol. 43, no. 1-2, pp. 9-44, 2002. doi: 10.1016/S0168-9274(02)00116-2
|
[10] |
V. Druskina and V. Simoncini, "Adaptive rational Krylov subspaces for large-scale dynamical systems, " Systems & Control Letters, vol. 60, no. 8, pp. 546-560, 2011. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.1142
|
[11] |
Y. Lin, L. Bao, and Y. Wei, "Order reduction of bilinear MIMO dynamical systems using new block Krylov subspaces, " Computers & Mathematics with Applications, vol. 58, no. 6, pp. 1093-1102, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d8485f740e10a179501d1d71f17b9f3
|
[12] |
R. S. Puri and D. A. Morrey, "Krylov-Arnoldi reduced order modelling framework for efficient, fully coupled, structural-acoustic optimization, " Structural and Multidisciplinary optimization, vol. 43, no. 4, pp. 495- 517, 2011. doi: 10.1007/s00158-010-0588-5
|
[13] |
J. H. Chen, S. M. Kang, J. Zou, and C. Liu, "Reduced-order modeling of weakly nonlinear MEMS devices with Taylor-series expansion and Arnoldi approach, " Journal of Microelectromechanical Systems, vol. 13, no. 3, pp. 441-451, 2004. doi: 10.1109/JMEMS.2004.828704
|
[14] |
H. J. Lee, C. C. Chu, and W. S. Feng, "An adaptive-order rational Arnoldi method for model-order reductions of linear time-invariant systems, " Linear Algebra and Its Applications, vol. 415, no. 2-3, pp. 235-261, 2006. doi: 10.1016/j.laa.2004.10.011
|
[15] |
Y. Yue and K. Meerbergen, "Parametric model order reduction of damped mechanical systems via the block Arnoldi process, " Applied Mathematics Letters, vol. 26. no. 6, pp. 643-648, 2013. doi: 10.1016/j.aml.2013.01.006
|
[16] |
M. Ahmadloo and A. Dounavis, "Parameterized model order reduction of electromagnetic systems using multiorder Arnoldi, " IEEE Transactions on Advanced Packaging, vol. 33, no. 4, pp. 1012-1020, 2010. doi: 10.1109/TADVP.2010.2050203
|
[17] |
Z. J. Bai, R. D. Slone, and W. T. Smith, "Error bound for reduced system model by Pade approximation via the Lanczos process, " IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 2, 133-141, 1999. doi: 10.1109/43.743719
|
[18] |
L. M. Silveira, M. Kamon, I. Elfadel, and J. White, "A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits, " Computer Methods in Applied Mechanics and Engineering, vol. 169, no. 3-4, pp. 377-389, 1999. doi: 10.1016/S0045-7825(98)00164-9
|
[19] |
Z. Bai and R. W. Freund, "A partial pade-via-Lanczos method for reduced-order modeling, " Linear Algebra and Its Applications, vol. 332, pp. 139-164, 2001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9598342670ff95a56008fd72d1b7a1bb
|
[20] |
Y. L. Jiang and Z. H. Xiao, "Arnoldi-based model reduction for fractional order linear systems, " International Journal of Systems Science, vol. 46, no. 8, pp. 1411-1420, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00207721.2013.822605
|
[21] |
Z. Gao, "Reduced order modelling method for linear fractional-order systems based on ynsymmetric Lanczos algorithm, " Control and Decision, vol. 31, no. 8, pp. 1499-1504, 2016.
|
[22] |
P. Feldmann and R. W. Freund, "Efficient linear circuit analysis by Pade approximation via the Lanczos process, " IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 5, pp. 639-649, 1995. doi: 10.1109/43.384428
|
[23] |
J. Shen and J. Lam, "$H_infty$ model reduction for positive fractional order systems, " Asian Journal of Control, vol. 16, no. 2, pp. 441-450, 2014. doi: 10.1002/asjc.2014.16.issue-2
|
[24] |
D. Matignon, "Stability properties for generalized fractional differential system, " in Proc. of Fractional Differential Systems, Models, Methods and Applications, Paris, 1998, pp. 145-158.
|