IEEE/CAA Journal of Automatica Sinica
Citation: | Emanuele Principi, Damiano Rossetti, Stefano Squartini and Francesco Piazza, "Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 441-451, Mar. 2019. doi: 10.1109/JAS.2019.1911393 |
[1] |
Y. Merizalde, L. Hernández-Callejo, and O. Duque-Perez, "State of the art and trends in the monitoring, detection and diagnosis of failures in electric induction motors, " Energies, vol. 10, no. 7, 2017.
|
[2] |
X. Dai and Z. Gao, "From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis, " IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2226-2238, 2013. http://ieeexplore.ieee.org/document/6423903/
|
[3] |
Z. Gao, C. Cecati, and S. Ding, "A survey of fault diagnosis and faulttolerant techniques-part i: Fault diagnosis with model-based and signalbased approaches, " IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3757-3767, 2015. http://ieeexplore.ieee.org/document/7069265/
|
[4] |
Z. W. Gao, C. Cecati, S. X. Ding, "A survey of fault diagnosis and fault-tolerant techniques-part ii: Fault diagnosis with knowledge-based and hybrid/active approaches, " IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3768-3774, 2015. http://ieeexplore.ieee.org/document/7076586/
|
[5] |
L. Wen, X. Li, L. Gao, and Y. Zhang, "A new convolutional neural network-based data-driven fault diagnosis method, " IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5990-5998, 2018. http://ieeexplore.ieee.org/document/8114247
|
[6] |
S. Nandi, H. A. Toliyat, and X. Li, "Condition monitoring and fault diagnosis of electrical motors -a review, " IEEE Transactions on Energy Conversion, vol. 20, no. 4, 2005. http://www.emeraldinsight.com/servlet/linkout?suffix=b15&dbid=16&doi=10.1108%2F03321641111101140&key=10.1109%2FTEC.2005.847955
|
[7] |
M. Seera, C. P. Lim, S. Nahavandi, and C. K. Loo, "Condition monitoring of induction motors: A review and an application of an ensemble of hybrid intelligent models, " Expert Systems with Applications, vol. 41, no. 10, pp. 4891-4903, 2014. doi: 10.1016/j.eswa.2014.02.028
|
[8] |
R. Isermann, "Model-based fault-detection and diagnosis -status and applications, " Annual Reviews in Control, vol. 29, no. 1, pp. 71-85, 2005. doi: 10.1016/j.arcontrol.2004.12.002
|
[9] |
M. Bouzid and G. Champenois, "New expression of symmetrical components of the inductor motor under stator faults, " IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4093-4410, 2013. doi: 10.1109/TIE.2012.2235392
|
[10] |
A. Adouni, A. Abid, and L. Sbita, "A DC motor fault detection, isolation and identification based on a new architecture Artificial Neural Network, " in Proc. 5th Int. Conf. on Systems and Control (ICSC), 2016, pp. 294-299. https://ieeexplore.ieee.org/document/7507054
|
[11] |
P. Konar and P. Chattopadhyay, "Bearing fault detection of induction motor using wavelet and support vector machines (SVMs), " Applied Soft Computing Journal, vol. 11, no. 6, pp. 4203-4211, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d0683a77de2881328a87d52b88dabe9
|
[12] |
V. N. Ghate and S. V. Dudul, "Cascade neural-network-based fault classifier for three-phase induction motor, " IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1555-1563, 2011. doi: 10.1109/TIE.2010.2053337
|
[13] |
R. Razavi-Far, M. Farajzadeh-Zanjani, S. Zare, M. Saif, and J. Zarei, "One-class classifiers for detecting faults in induction motors, " in Proc. 30th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2017. http://ieeexplore.ieee.org/document/7946719/
|
[14] |
A. Soualhi, G. Clerc, and H. Razik, "Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique, " IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 4053-4062, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ee5677300154bed234412c0e1d776f7
|
[15] |
H. C. Cho, J. Knowles, S. Fadali, and K. S. Lee, "Fault detection and isolation of induction motors using recurrent neural networks and dynamic Bayesian modeling, " IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 430-437, 2010. doi: 10.1109/TCST.2009.2020863
|
[16] |
M. Markou and S. Singh, "Novelty detection: A review -part 1: Statistical approaches, " Signal Processing, vol. 83, no. 12, pp. 2481-2497, 2003. doi: 10.1016/j.sigpro.2003.07.018
|
[17] |
M. Markou and S. Singh, "Novelty detection: A review -part 2: Neural network based approaches, " Signal Processing, vol. 83, no. 12, pp. 2499-2521, 2003. doi: 10.1016/j.sigpro.2003.07.019
|
[18] |
E. Principi, F. Vesperini, S. Squartini, and F. Piazza, "Acoustic novelty detection with adversarial autoencoders, " in Proc. Int. Joint Conf. Neural Networks (IJCNN), Anchorage, AK, USA, 2017, pp. 3324-3330. http://ieeexplore.ieee.org/document/7966273/
|
[19] |
T. Schlegl, P. Seeböck, S. Waldstein, U. Schmidt-Erfurth, and G. Langs, "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, " Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10265 LNCS, pp. 146-147, 2017. doi: 10.1007/978-3-319-59050-9_12
|
[20] |
P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernáandez, and E. Váazquez, "Anomaly-based network intrusion detection: Techniques, systems and challenges, " Computers and Security, vol. 28, no. 1-2, pp. 18-28, 2009. doi: 10.1016/j.cose.2008.08.003
|
[21] |
C. Gong, "Exploring commonality and individuality for multi-modal curriculum learning, " in Proc. 31st AAAI Conference on Artificial Intelligence, 2017, pp. 1926-1933. http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14205
|
[22] |
C. Gong, D. Tao, S. Maybank, W. Liu, G. Kang, and J. Yang, "Multimodal curriculum learning for semi-supervised image classification, " IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3249-3260, 2016. http://ieeexplore.ieee.org/document/7465792/
|
[23] |
C. Gong, D. Tao, W. Liu, L. Liu, and J. Yang, "Label propagation via teaching-to-learn and learning-to-teach, " IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 6, pp. 1452-1465, 2017. doi: 10.1109/TNNLS.2016.2514360
|
[24] |
C. Gong, T. Liu, D. Tao, K. Fu, E. Tu, and J. Yang, "Deformed graph laplacian for semisupervised learning, " IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2261-2274, 2015. doi: 10.1109/TNNLS.2014.2376936
|
[25] |
F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, " Mechanical Systems and Signal Processing, vol. 72-73, pp. 303-315, 2016. doi: 10.1016/j.ymssp.2015.10.025
|
[26] |
T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, "Real-time motor fault detection by 1-D convolutional neural networks, " IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7067-7075, 2016. doi: 10.1109/TIE.2016.2582729
|
[27] |
W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, "A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals, " Sensors, vol. 17, no. 2, 2017. http://europepmc.org/articles/PMC5336047/
|
[28] |
Y. LeCun. LeNet-5, convolutional neural networks[Online]. Available: http://yann.lecun.com/exdb/lenet, 2015.
|
[29] |
S. Zgarni, H. Keskes, and A. Braham, "Nested SVDD in DAG SVM for induction motor condition monitoring, " Engineering Applications of Artificial Intelligence, vol. 71, pp. 210-215, 2018. doi: 10.1016/j.engappai.2018.02.019
|
[30] |
J. Sun, C. Yan, and J. Wen, "Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning, " IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 1, pp. 185-195, 2018. doi: 10.1109/TIM.2017.2759418
|
[31] |
F. Jia, Y. Lei, L. Guo, J. Lin, and S. Xing, "A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines, " Neurocomputing, vol. 272, pp. 619-628, 2018. doi: 10.1016/j.neucom.2017.07.032
|
[32] |
H. Shao, H. Jiang, Y. Lin, and X. Li, "A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders, " Mechanical Systems and Signal Processing, vol. 102, pp. 278-297, 2018. doi: 10.1016/j.ymssp.2017.09.026
|
[33] |
B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt, "Support vector method for novelty detection, " in Advances in Neural Information Processing Systems, vol. 12. MIT Press, 2000, pp. 582-588. http://dl.acm.org/citation.cfm?id=3009740
|
[34] |
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st ed. Cambridge, Massachussets, USA: MIT Press, 2016, ch. 14, pp. 502-524.
|
[35] |
M. Seltzer, D. Yu, and Y. Wang, "An investigation of deep neural networks for noise robust speech recognition, " in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 2013, pp. 7398-7402. https://ieeexplore.ieee.org/document/6639100
|
[36] |
A.-R. Mohamed, G. Hinton, and G. Penn, "Understanding how deep belief networks perform acoustic modelling, " in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012, pp. 4273-4276. http://ieeexplore.ieee.org/document/6288863/
|
[37] |
Y. Kashimoto, M. Fujimoto, H. Suwa, Y. Arakawa, and K. Yasumoto, "Floor vibration type estimation with piezo sensor toward indoor positioning system, " in Proc. Int. Conf. on Indoor Positioning and Indoor Navigation, Madrid, Spain, 2016, pp. 1-6. http://ieeexplore.ieee.org/document/7743667/
|
[38] |
F. Nelwamondo and T. Marwala, "Faults detection using gaussian mixture models, mel-frequency cepstral coefficients and kurtosis, " in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 1, Taipei, China, 2007, pp. 290-295. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4273844
|
[39] |
A. Oppenheim and R. Schafer, Discrete-time Signal Processing, 3rd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, Inc., 2009.
|
[40] |
S. Davis and P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, " IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 357-366, 1980. doi: 10.1109/TASSP.1980.1163420
|
[41] |
D. O'Shaughnessy, Speech Communications: Human and Machine, 2nd ed. IEEE, 1999.
|
[42] |
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift, " in Proc. 32nd International Conference on Machine Learning (ICML), vol. 1, 2015, pp. 448-456. http://www.arxiv.org/abs/1502.03167
|
[43] |
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.
|
[44] |
S. Hochreiter and J. Schmidhuber, "Long short-term memory, " Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997. doi: 10.1162/neco.1997.9.8.1735
|
[45] |
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
|
[46] |
D. Kingma and J. Ba, "Adam: A method for stochastic optimization, " arXiv preprint arXiv: 1412.6980, 2014. http://www.oalib.com/paper/4068193
|
[47] |
J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization, " Journal of Machine Learning Research, vol. 13, pp. 281-305, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214989014
|
[48] |
M. Kliger and S. Fleishman, "Novelty detection with gan, " arXiv: 1802.10560, 2018. https://arxiv.org/abs/1802.10560
|
[49] |
D. Droghini, F. Vesperini, E. Principi, S. Squartini, and F. Piazza, "Fewshot siamese neural networks employing audio features for humanfall detection, " in Proc. International Conference on Pattern Recognition and Artificial Intelligence, Union, NJ, USA, 2018, pp. 63-69.
|
[50] |
G. Koch, R. Zemel, and R. Salakhutdinov, "Siamese neural networks for one-shot image recognition, " in ICML Deep Learning Workshop, vol. 2, 2015.
|
[51] |
U. Orji, Z. Remscrim, C. Laughman, S. Leeb, W. Wichakool, C. Schantz, R. Cox, J. Paris, J. Kirtley Jr., and L. Norford, "Fault detection and diagnostics for non-intrusive monitoring using motor harmonics, " in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 2010, pp. 1547-1554. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5433437
|
[52] |
R. Bonfigli, E. Principi, M. Fagiani, M. Severini, S. Squartini, and F. Piazza, "Non-intrusive load monitoring by using active and reactive power in additive factorial hidden markov models, " Applied Energy, vol. 208, pp. 1590-1607, 2017. doi: 10.1016/j.apenergy.2017.08.203
|
[53] |
A. Graves and N. Jaitly, "Towards end-to-end speech recognition with recurrent neural networks, " in Proc. International Conference on Machine Learning (ICML), vol. 5, 2014, pp. 3771-3779.
|
[54] |
W. Caesarendra and T. Tjahjowidodo, "A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing, " Machines, vol. 5, no. 4, 2017.
|
[55] |
Z. Li, Y. Jiang, Q. Guo, C. Hu, and Z. Peng, "Multi-dimensional variational mode decomposition for bearing-crack detection in wind turbines with large driving-speed variations, " Renewable Energy, vol. 116, pp. 55-73, 2018. doi: 10.1016/j.renene.2016.12.013
|