IEEE/CAA Journal of Automatica Sinica
Citation: | Yang Yu, Shangce Gao, Yirui Wang and Yuki Todo, "Global Optimum-Based Search Differential Evolution," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 379-394, Mar. 2019. doi: 10.1109/JAS.2019.1911378 |
[1] |
D. E. Goldberg and S. Voessner, "Optimizing global-local search hybrids, " in Proc. 1st Annual Conference on Genetic and Evolutionary Computation-Volume 1. Morgan Kaufmann Publishers Inc., 1999, pp. 220-228.
|
[2] |
P. Moscato and C. Cotta, "A gentle introduction to memetic algorithms, " Handbook of Metaheuristics. Springer, 2003, pp. 105-144. http://lcc.uma.es/~ccottap/papers/handbook03memetic.pdf
|
[3] |
N. Krasnogor and J. Smith, "A tutorial for competent memetic algorithms: model, taxonomy, and design issues, " IEEE Transactions on Evolutionary Computation, vol. 9, no. 5, pp. 474-488, 2005. doi: 10.1109/TEVC.2005.850260
|
[4] |
X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, "A multi-facet survey on memetic computation, " IEEE Transactions on Evolutionary Computation, vol. 15, no. 5, pp. 591-607, 2011. doi: 10.1109/TEVC.2011.2132725
|
[5] |
L. Feng, Y.-S. Ong, M.-H. Lim, and I. W. Tsang, "Memetic search with interdomain learning: A realization between cvrp and carp, " IEEE Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 644-658, 2015. http://ieeexplore.ieee.org/document/6920023/
|
[6] |
A. Maesani, G. Iacca, and D. Floreano, "Memetic viability evolution for constrained optimization, " IEEE Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 125-144, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48120dad14aa989bfecf374355cb61b6
|
[7] |
Y. Ong, M. Lim, N. Zhu, and K. Wong, "Classification of adaptive memetic algorithms: a comparative study, " Proc. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36, no. 1, pp. 141-152, 2006. doi: 10.1109/TSMCB.2005.856143
|
[8] |
P. Cowling, G. Kendall, and E. Soubeiga, "A hyperheuristic approach to scheduling a sales summit, " in International Conference on the Practice and Theory of Automated Timetabling. Springer, 2000, pp. 176-190. http://www.lifl.fr/~derbel/ueOC/cours/hyper_summit.pdf
|
[9] |
A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential evolution algorithm with strategy adaptation for global numerical optimization, " IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398-417, 2009. http://www.emeraldinsight.com/servlet/linkout?suffix=b17&dbid=16&doi=10.1108%2F17563781311301535&key=10.1109%2FTEVC.2008.927706
|
[10] |
Z. Song, S. Gao, Y. Yu, J. Sun, and Y. Todo, "Multiple chaos embedded gravitational search algorithm, " IEICE Transactions on Information and Systems, vol. 100, no. 4, pp. 888-900, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_2199332
|
[11] |
E. K. Burke, G. Kendall, and E. Soubeiga, "A tabu-search hyperheuristic for timetabling and rostering, " Journal of Heuristics, vol. 9, no. 6, pp. 451-470, 2003. doi: 10.1023/B:HEUR.0000012446.94732.b6
|
[12] |
N. Krasnogor and J. Smith, "Multimeme algorithms for the structure prediction and structure comparison of proteins, " in GECCO, 2002, pp. 42-44. https://www.researchgate.net/publication/2495520_Multimeme_Algorithms_for_the_Structure_Prediction_and_Structure_Comparison_of_Proteins
|
[13] |
N. Krasnogor, "Studies on the theory and design space of memetic algorithms. " Ph. D. dissertation, University of the West of England at Bristol, 2002. http://europepmc.org/theses/ETH/249135
|
[14] |
J. Smith, "Co-evolving memetic algorithms: Initial investigations, " in Proc. International Conference on Parallel Problem Solving from Nature. Springer, 2002, pp. 537-546. https://www.researchgate.net/publication/220702057_Co-evolving_Memetic_Algorithms_Initial_Investigations
|
[15] |
J. Smith, "Co-evolving memetic algorithms: A learning approach to robust scalable optimisation, " in Proc. IEEE Congresson Evolutionary Computation (CEC), vol. 1. IEEE, 2003, pp. 498-505. https://www.researchgate.net/publication/4074803_Co-evolving_memetic_algorithms_A_learning_approach_to_robust_scalable_optimization
|
[16] |
S. Gao, C. Vairappan, Y. Wang, Q. Cao, and Z. Tang, "Gravitational search algorithm combined with chaos for unconstrained numerical optimization, " Applied Mathematics and Computation, vol. 231, pp. 48-62, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efb8617ef0ebdad62e5e94f52b1451db
|
[17] |
N. Noman and H. Iba, "Enhancing differential evolution performance with local search for high dimensional function optimization, " in Proc. of the 7th annual conference on Genetic and evolutionary computation. ACM, 2005, pp. 967-974. https://www.cs.york.ac.uk/rts/docs/GECCO_2005/Conference%20proceedings/docs/p967.pdf
|
[18] |
R. Storn and K. Price, "Differential evolution--a simple and efficient heuristic for global optimization over continuous spaces, " Journal of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997. doi: 10.1023/A:1008202821328
|
[19] |
N. Awad, M. Ali, J. Liang, B. Qu, and P. Suganthan, "Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization, " Technical Report. NTU, Singapore, 2016.
|
[20] |
S. Das and P. N. Suganthan, "Differential evolution: A survey of the state-of-the-art, " IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4-31, 2011. http://ieeexplore.ieee.org/document/5601760/
|
[21] |
J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, "Selfadapting control parameters in differential evolution: A comparative study on numerical benchmark problems, " IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646-657, 2006. doi: 10.1109/TEVC.2006.872133
|
[22] |
J. Sun, S. Gao, H. Dai, J. Cheng, M. Zhou, and J. Wang, "Bi-objective elite differential evolution for multivalued logic networks, " IEEE Transactions on Cybernetics, 2018, doi: 10.1109/TCYB.2018.2868493.
|
[23] |
J. Wang, W. Zhang, and J. Zhang, "Cooperative differential evolution with multiple populations for multiobjective optimization, " IEEE Transactions on Cybernetics, vol. 46, no. 12, pp. 2848-2861, 2016. doi: 10.1109/TCYB.2015.2490669
|
[24] |
Y. Cai, G. Sun, T. Wang, H. Tian, Y. Chen, and J. Wang, "Neighborhoodadaptive differential evolution for global numerical optimization, " Applied Soft Computing, vol. 59, pp. 659-706, 2017. doi: 10.1016/j.asoc.2017.06.002
|
[25] |
F. Neri and V. Tirronen, "Recent advances in differential evolution: a survey and experimental analysis, " Artificial Intelligence Review, vol. 33, no. 1-2, pp. 61-106, 2010. http://dl.acm.org/citation.cfm?id=1713731
|
[26] |
S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, "Differential evolution using a neighborhood-based mutation operator, " IEEE Transactions on Evolutionary Computation, vol. 13, no. 3, pp. 526-553, 2009. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224536810/
|
[27] |
N. Noman and H. Iba, "Accelerating differential evolution using an adaptive local search, " IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 107-125, 2008. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0213692140/
|
[28] |
A. Caponio, F. Neri, and V. Tirronen, "Super-fit control adaptation in memetic differential evolution frameworks, " Soft Computing, vol. 13, no. 8-9, pp. 811, 2009. doi: 10.1007/s00500-008-0357-1
|
[29] |
F. Neri and V. Tirronen, "Scale factor local search in differential evolution, " Memetic Computing, vol. 1, no. 2, pp. 153-171, 2009. doi: 10.1007/s12293-009-0008-9
|
[30] |
D. Jia, G. Zheng, and M. K. Khan, "An effective memetic differential evolution algorithm based on chaotic local search, " Information Sciences, vol. 181, no. 15, pp. 3175-3187, 2011. doi: 10.1016/j.ins.2011.03.018
|
[31] |
N. R. Sabar, J. Abawajy, and J. Yearwood, "Heterogeneous cooperative co-evolution memetic differential evolution algorithm for big data optimization problems, " IEEE Transactions on Evolutionary Computation, vol. 21, no. 2, pp. 315-327, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df4587287810554196508078408ce1e9
|
[32] |
H. Rosenbrock, "An automatic method for finding the greatest or least value of a function, " The Computer Journal, vol. 3, no. 3, pp. 175-184, 1960. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_0acaf0b4f2ae0d4cca4ea51b3bf8c280
|
[33] |
M. J. Powell, "An efficient method for finding the minimum of a function of several variables without calculating derivatives, " The Computer Journal, vol. 7, no. 2, pp. 155-162, 1964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002550018
|
[34] |
S.-M. Guo, C.-C. Yang, P.-H. Hsu, and J. S.-H. Tsai, "Improving differential evolution with a successful-parent-selecting framework, " IEEE Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 717-730, 2015. doi: 10.1109/TEVC.2014.2375933
|
[35] |
R. Mallipeddi, P. N. Suganthan, Q. Pan, and M. F. Tasgetiren, "Differential evolution algorithm with ensemble of parameters and mutation strategies, " Applied Soft Computing, vol. 11, no. 2, pp. 1679-1696, 2011. doi: 10.1016/j.asoc.2010.04.024
|
[36] |
J. Zhang and A. C. Sanderson, "JADE: adaptive differential evolution with optional external archive, " IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945-958, 2009. doi: 10.1109/TEVC.2009.2014613
|
[37] |
R. Tanabe and A. Fukunaga, "Success-history based parameter adaptation for differential evolution, " in Proc. IEEE Congress Evolutionary Computation (CEC). 2013, pp. 71-78. http://metahack.org/CEC2013-SHADE.pdf
|
[38] |
S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, "Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, " Information Sciences, vol. 180, no. 10, pp. 2044-2064, 2010. doi: 10.1016/j.ins.2009.12.010
|
[39] |
J. Derrac, S. Garcia, D. Molina, and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, "Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3-18, 2011. http://www.sciencedirect.com/science/article/pii/S2210650211000034
|
[40] |
S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, "Dendritic neural model with effective learning algorithms for classification, approximation, and prediction, " IEEE Transactions on Neural Networks and Learning Systems. vol. 30, no. 2, pp. 601-614, 2019. http://ieeexplore.ieee.org/document/8409490/
|
[41] |
J. Luengo, S. Garcia, and F. Herrera, "A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests, " Expert Systems with Applications, vol. 36, no. 4, pp. 7798-7808, 2009. doi: 10.1016/j.eswa.2008.11.041
|
[42] |
S. Gao, Y. Wang, J. Wang, and J. Cheng, "Understanding differential evolution: A Poisson law derived from population interaction network, " Journal of Computational Science, vol. 21, pp. 140-149, 2017. doi: 10.1016/j.jocs.2017.06.007
|
[43] |
D. Molina, M. Lozano, C. Garcia-Martinez, and F. Herrera, "Memetic algorithms for continuous optimisation based on local search chains, " Evolutionary Computation, vol. 18, no. 1, pp. 27-63, 2010. https://ieeexplore.ieee.org/document/6793771
|
[44] |
S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer, " Advances in Engineering Software, vol. 69, pp. 46-61, 2014. doi: 10.1016/j.advengsoft.2013.12.007
|
[45] |
J. Cheng, J. Cheng, M. Zhou, F. Liu, S. Gao, and C. Liu, "Routing in internet of vehicles: A review, " IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2339-2352, 2015. doi: 10.1109/TITS.2015.2423667
|
[46] |
J. Cheng, H. Mi, Z. Huang, S. Gao, D. Zang, and C. Liu, "Connectivity modeling and analysis for internet of vehicles in urban road scene, " IEEE Access, vol. 6, pp. 2692-2702, 2018. doi: 10.1109/ACCESS.2017.2784845
|
[47] |
S. Gao, Y. Wang, J. Cheng, Y. Inazumi, and Z. Tang, "Ant colony optimization with clustering for solving the dynamic location routing problem, " Applied Mathematics and Computation, vol. 285, pp. 149-173, 2016. doi: 10.1016/j.amc.2016.03.035
|
[48] |
S. Wang, Aorigele, G. Liu, and S. Gao, "A hybrid discrete imperialist competition algorithm for fuzzy job-shop scheduling problems, " IEEE Access, vol. 4, pp. 9320-9331, 2016. doi: 10.1109/ACCESS.2016.2645818
|
[49] |
C. Liu, J. Zhang, G. Li, S. Gao, and Q. Zeng, "A two-layered framework for the discovery of software behavior: A case study, " IEICE Transactions on Information and Systems, vol. 101, no. 8, pp. 2005-2014, 2018.
|
[50] |
S. Song, S. Gao, X. Chen, D. Jia, X. Qian, and Y. Todo, "AIMOES: Archive information assisted multi-objective evolutionary strategy for ab initio protein structure prediction, " Knowledge-Based Systems, vol. 146, pp. 58-72, 2018. doi: 10.1016/j.knosys.2018.01.028
|
[51] |
S. Gao, S. Song, J. Cheng, Y. Todo, and M. Zhou, "Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction, " IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 15, no. 4, pp. 1365-1378, 2018. doi: 10.1109/TCBB.2017.2705094
|