IEEE/CAA Journal of Automatica Sinica
Citation: | Magdi S. Mahmoud and Mojeed O. Oyedeji, "Adaptive and Predictive Control Strategies for Wind Turbine Systems: A Survey," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 364-378, Mar. 2019. doi: 10.1109/JAS.2019.1911375 |
[1] |
Z. Z. Yang, Y. Y. Li, and J. E. Seem, "Multi-model predictive control for wind turbine operation under meandering wake of upstream turbines, " Contr. Eng. Pract., vol. 45, pp. 37-45, Dec. 2015. https://www.sciencedirect.com/science/article/abs/pii/S096706611530006X
|
[2] |
L. M. Fernández, J. R. Saenz, and F. Jurado, "Dynamic models of wind x farms with fixed speed wind turbines, " Renew. Energy, vol. 31, no. 8, pp. 1203-1230, Jul. 2006. https://www.sciencedirect.com/science/article/pii/S0960148105001758
|
[3] |
F. D. Bianchi, R. J. Mantz, and H. De Battista, Wind Turbine Control System:Principles, Modelling and Gain Scheduling Design. London, UK:Springer-Verlag, 2007. https://www.springer.com/us/book/9781846284922
|
[4] |
H. R. Zhao, Q. W. Wu, C. N. Rasmussen, and M. Blanke, "L1 adaptive speed control of a small wind energy conversion system for maximum power point tracking, " IEEE Trans. Energy Convers., vol. 29, no. 3, pp. 576-584, Sep. 2014. https://www.researchgate.net/publication/278083694_L-1_Adaptive_Speed_Control_of_a_Small_Wind_Energy_Conversion_System_for_Maximum_Power_Point_Tracking
|
[5] |
H. Jafarnejadsani and J. Pieper, "Gain-scheduled $\ell_1$ optimal control of variable-speed-variable-pitch wind turbines, " IEEE Trans. Contr. Syst. Technol., vol. 23, no. 1, pp. 372-379, Jan. 2015.
|
[6] |
E. Iyasere, M. Salah, D. Dawson, and J. Wagner, "Nonlinear robust control to maximize energy capture in a variable speed wind turbine, " in Proc. American Control Conf., Seattle, WA, USA, 2008, pp. 1824- 1829. doi: 10.1007%2Fs11768-012-0315-4
|
[7] |
C. Sloth, T. Esbensen, M. O. K. Niss, J. Stoustrup, and P. F. Odgaard, "Robust LMI-based control of wind turbines with parametric uncertainties, " in Proc. 18th IEEE Int. Conf. Control Applications, St. Petersburg, Russia, 2009, pp. 776-781. https://ieeexplore.ieee.org/document/5281171
|
[8] |
E. B. Muhando, T. Senjyu, N. Urasaki, A. Yona, and T. Funabashi, "Robust predictive control of variable-speed wind turbine generator by self-tuning regulator, " in Proc. IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007, pp. 1-8. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004275651
|
[9] |
H. Aschemann and J. Kersten, "Control and robust tower oscillation damping for a wind turbine equipped with a hydrostatic drive train and a synchronous generator, " in Proc. 21st Int. Conf. Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2016, pp. 1051-1056.
|
[10] |
K. B. Alaoui, E. M. Boufounas, and I. Boumhidi, "Integral sliding mode control without reaching phase for a variable speed wind turbine, " in Proc. Int. Conf. Electrical and Information Technologies (ICEIT), Tangiers, Morocco, 2016, 78-83.
|
[11] |
B. Hamane, M. L. Doumbia, M. Bouhamida, and M. Benghanem, "Control of wind turbine based on DFIG using fuzzy-PI and sliding mode controllers, " in Proc. 9th Int. Conf. Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 2014. https://www.researchgate.net/publication/269298961_Control_of_wind_turbine_based_on_DFIG_using_Fuzzy-PI_and_Sliding_Mode_controllers
|
[12] |
X. R. Zhu, S. P. Liu, and Y. Wang, "Second-order sliding-mode control of DFIG-based wind turbines, " in Proc. 3rd Renewable Power Generation Conf. (RPG 2014), Naples, Italy, 2014, pp. 1-6.
|
[13] |
S. Rajendran and D. Jena, "Backstepping sliding mode control for variable speed wind turbine, " in Proc. Ann. IEEE India Conf. (INDICON), Pune, India, 2014, pp. 1-6. doi: 10.1007%2Fs40565-015-0106-2
|
[14] |
X. X. Yin, Y. G. Lin, W. Li, H. W. Liu, and Y. J. Gu, "Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines, " ISA Trans., vol. 58, pp. 629-634, Sep. 2015. https://www.sciencedirect.com/science/article/abs/pii/S0019057815001743
|
[15] |
H. M. Nguyen, "Advanced control strategies for wind energy conversion systems, " Ph.D. dissertation, School Eng., College Sci. Eng., Idaho State Univ., 2013. https://www.researchgate.net/publication/261384649_Advanced_control_strategies_for_wind_energy_systems_An_overview
|
[16] |
J. G. Slootweg, H. Polinder, and W. L. Kling, "Dynamic modelling of a wind turbine with doubly fed induction generator, " in Proc. IEEE Power Engineering Society Summer Meeting, Vancouver, BC, Canada, 2001, vol. 1, pp. 644-649. view-source:http://localhost/xml_insert_formula.php
|
[17] |
N. P. W. Strachan and D. Jovcic, "Dynamic modelling, simulation and analysis of an offshore variable-speed directly-driven permanentmagnet wind energy conversion and storage system (WECSS), " in Proc. Europe OCEANS, Aberdeen, UK, 2007, pp. 1-6. https://wenku.baidu.com/view/e01d806825c52cc58bd6be64.html
|
[18] |
M. Marinelli, A. Morini, A. Pitto, and F. Silvestro, "Modeling of doubly fed induction generator (DFIG) equipped wind turbine for dynamic studies, " in Proc. 43rd Int. Universities Power Engineering Conf. (UPEC), Padova, Italy, 2008, pp. 1-6. http://orbit.dtu.dk/fedora/objects/orbit:114495/datastreams/file_10710085/content
|
[19] |
E. S. Abdin and W. Xu, "Control design and dynamic performance analysis of a wind turbine-induction generator unit, " IEEE Trans. Energy Convers., vol. 15, no. 1, pp. 91-96, Mar. 2000. https://ieeexplore.ieee.org/document/849122
|
[20] |
S. El Aimani, "Modeling and control structures for variable speed wind turbine", in Proc. Int. Conf. Multimedia Computing and Systems (ICMCS), Ouarzazate, Morocco, 2011, pp. 1-5.
|
[21] |
I. Munteanu, N. A. Cutululis, A. I. Bratcu, and E. Ceangǎ, Optimal Control of Wind Energy Systems:Towards a Global Approach. London, UK:Springer, 2008. https://www.springer.com/us/book/9781848000797
|
[22] |
Z. Xu and Z. P. Pan, "Influence of different flexible drive train models on the transient responses of DFIG wind turbine, " in Proc. Int. Conf. Electrical Machines and Systems, Beijing, China, 2011, pp. 1-6. https://www.researchgate.net/publication/261352479_Influence_of_different_flexible_drive_train_models_on_the_transient_responses_of_DFIG_wind_turbine
|
[23] |
Y. Guo, "Control and optimization of variable-speed wind turbines and large-scale wind farms, " Ph.D. dissertation, School Electr. Comput. Eng., Univ. Oklahoma, Norman, Oklahoma, 2012.
|
[24] |
A. M. Kassem, "Modeling and control design of a stand alone wind energy conversion system based on functional model predictive control, " Energy Syst., vol. 3, no. 3, pp. 303-323, Sep. 2012.
|
[25] |
H. W. Kim, S. S. Kim, and H. S. Ko, "Modeling and control of PMSGbased variable-speed wind turbine, " Electr. Power Syst. Res., vol. 80, no. 1, pp. 46-52, Jan. 2010. https://www.sciencedirect.com/science/article/abs/pii/S0378779609001771
|
[26] |
J. Jonkmann, S. Butterfield, W. Musial, and G. Scott, "Definition of a 5-MW reference wind turbine for offshore system development, " Natl. Renew. Energy Labor., Golden, CO, USA, Tech. Rep. TP-500-38060, Feb. 2007.
|
[27] |
T. J. Larsen and A. M. Hansen, "How 2 HAWC2 the user's manual, " Riso National Laboratory, Roskilde, Denmark, R-1597 (ver. 3-1), Dec. 2007. http://orbit.dtu.dk/fedora/objects/orbit:79840/datastreams/file_7703110/content
|
[28] |
L. Bottasso and A. Croce, "Cp-lambda user manual, " Dipartimento di IngnegneriaAerospaziale, Politecnico di Milano, Milano, 2009.
|
[29] |
H. Li, K. L. Shi, and P. G. McLaren, "Neural-network-based sensorless maximum wind energy capture with compensated power coefficient, " IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1548-1556, Nov.-Dec. 2005. https://ieeexplore.ieee.org/document/1542308
|
[30] |
A. G. Abo-Khalil, D. C. Lee, and J. K. Seok, "Variable speed wind power generation system based on fuzzy logic control for maximum output power tracking, " in Proc. 35th Ann. Power Electronics Specialists Conf., Aachen, Germany, 2004, vol. 3, pp. 2039-2043. https://ieeexplore.ieee.org/document/1355431
|
[31] |
C. H. Shao, X. J. Chen, and Z. H. Liang, "Application research of maximum wind-energy tracing controller based adaptive control Strategy in WECS, " in Proc. CES/IEEE 5th Int. Power Electronics and Motion Control Conf. (IPEMC 2006), Shanghai, China, 2006. https://ieeexplore.ieee.org/document/4778055
|
[32] |
A. B. Raju, B. G. Fernandes, and K. Chatterjee, "A UPF power conditioner with maximum power point tracker for grid connected variable speed wind energy conversion system, " in Proc. 1st Int. Conf. Power Electronics Systems and Applications (PESA 2004), Hong Kong, China, 2004, pp. 107-112. https://www.researchgate.net/publication/4143341_A_UPF_power_conditioner_with_maximum_power_point_tracker_for_grid_connected_variable_speed_wind_energy_conversion_system
|
[33] |
R. M. Hilloowala and A. M. Sharaf, "A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme, " IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 57-65, Jan.-Feb. 1996. https://ieeexplore.ieee.org/document/485813
|
[34] |
G. Hua and Y. Geng, "A novel control strategy of MPPT taking dynamics of wind turbine into account, " in Proc. 37th IEEE Power Electronics Specialists Conf. PESC'06, Jeju, South Korea, 2006. https://www.researchgate.net/publication/224653261_A_Novel_Control_Strategy_of_MPPT_Taking_Dynamics_of_Wind_Turbine_into_Account
|
[35] |
V. Galdi, A. Piccolo, and P. Siano, "Designing an adaptive fuzzy controller for maximum wind energy extraction, " IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 559-569, Jun. 2008. https://ieeexplore.ieee.org/document/4458230
|
[36] |
Q. Wang and L. C. Chang, "An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems, " IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1242-1249, Sep. 2004. https://ieeexplore.ieee.org/document/1331485
|
[37] |
E. Koutroulis and K. Kalaitzakis, "Design of a maximum power tracking system for wind-energy-conversion applications, " IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, Apr. 2006. https://www.tuc.gr/fileadmin/users_data/elci/Kalaitzakis/J.33.pdf
|
[38] |
M. Matsui, D. H. Xu, L. Y. Kang, and Z. Yang, "Limit cycle based simple MPPT control scheme for a small sized wind turbine generator system-principle and experimental verification, " in Proc. 4th Int. Power Electronics and Motion Control Conf., Xi'an, China, 2004, vol. 3, pp. 1746-1750.
|
[39] |
Y. Higuchi, N. Yamamura, M. Ishida, and T. Hori, "An improvement of performance for small-scaled wind power generating system with permanent magnet type synchronous generator, " in Proc. 26th Ann. Conf. IEEE Ind. Electronics Society, IECON, Nagoya, Japan, 2000, pp. 1039-1043. https://ieeexplore.ieee.org/document/972265
|
[40] |
S. T. Wang, Z. Y. Qi, and T. Undeland, "State space averaging modeling and analysis of disturbance injection method of MPPT for small wind turbine generating systems, " in Proc. Asia-Pacific Power and Energy Engineering Conf., Wuhan, China, 2009, pp. 1-5.
|
[41] |
R. J. Wai, C. Y. Lin, and Y. R. Chang, "Novel maximum-power extraction algorithm for PMSG wind generation system, " IET Electric Power Appl., vol. 1, no. 2, pp. 275-283, Mar. 2007. https://www.researchgate.net/publication/3478286_Novel_maximum-power-extraction_algorithm_for_PMSG_wind_generation_system
|
[42] |
Y. Q. Jia, Z. Q. Yang, and B. G. Cao, "A new maximum power point tracking control scheme for wind generation, " in Proc. Int. Conf. Power System Technology, Kunming, China, 2002, pp. 144-148.
|
[43] |
J. Hui and A. Bakhshai, "A new adaptive control algorithm for maximum power point tracking for wind energy conversion systems, " in Proc. IEEE Power Electronics Specialists Conf., Rhodes, Greece, 2008, pp. 4003-4007. https://ieeexplore.ieee.org/document/4592580
|
[44] |
J. Hui and A. Bakhshai, "Adaptive algorithm for fast maximum power point tracking in wind energy systems, " in Proc. 34th Ann. Conf. IEEE Industrial Electronics, Orlando, FL, USA, 2008, pp. 2119-2124. https://ieeexplore.ieee.org/document/7407356
|
[45] |
M. G. Molina and P. E. Mercado, "A new control strategy of variable speed wind turbine generator for three-phase grid-connected applications, " in Proc. IEEE/PES Transmission and Distribution Conf. and Exposition:Latin America, Bogota, Colombia, 2008, pp. 1-8. https://ieeexplore.ieee.org/document/4641870?arnumber=4641870
|
[46] |
T. Tafticht, K. Agbossou, and A. Cheriti, "DC bus control of variable speed wind turbine using a buck-boost converter, " in Proc. IEEE Power Eng. Society General Meeting, Montreal, Que., Canada, 2006. https://ieeexplore.ieee.org/document/1709469
|
[47] |
J. M. Kwon, J. H. Kim, S. H. Kwak, and H. H. Lee, "Optimal power extraction algorithm for DTC in wind power generation systems, " in Proc. IEEE Int. Conf. Sustainable Energy Technology (ICEST 2008), Singapore, 2008, pp. 639-643. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004747085
|
[48] |
C. Patsios, A. Chaniotis, and A. Kladas, "A hybrid maximum power point tracking system for grid-connected variable speed windgenerators, " in Proc. IEEE Power Electronics Specialists Conf., Rhodes, Greece, 2008, pp. 1749-1754. https://www.researchgate.net/publication/224323777_A_Hybrid_Maximum_Power_Point_Tracking_System_for_Grid-Connected_Variable_Speed_Wind-Generators
|
[49] |
C. Patsios, A. Chaniotis, and A. G. Kladas, "ANN-based maximum power point tracking control of variable speed wind energy conversion systems, " in Proc. 18th IEEE Int. Conf. Control Applications, 2009.
|
[50] |
S. Bououden, M. Chadli, S. Filali, and A. E. Hajjaji, "Fuzzy model based multivariable predictive control of a variable speed wind turbine:LMI approach, " Renew. Energy, vol. 37, no. 1, pp. 434-439, Jan. 2012. https://www.sciencedirect.com/science/article/pii/S096014811100317X
|
[51] |
M. A. Evans, M. Cannon, and B. Kouvaritakis, "Robust MPC tower damping for variable speed wind turbines, " IEEE Trans. Contr. Syst. Technol., vol. 23, no. 1, pp. 290-296, Jan. 2015. https://ieeexplore.ieee.org/document/6778765
|
[52] |
D. Castaignet, I. Couchman, N. K. Poulsen, T. Buhl, and J. J. WedelHeinen, "Frequency-weighted model predictive control of trailing edge flaps on a wind turbine blade, " IEEE Trans. Contr. Syst. Technol., vol. 21, no. 4, pp. 1105-1116, Jul. 2013. https://ieeexplore.ieee.org/document/6525363
|
[53] |
C. L. Bottasso, P. Pizzinelli, C. E. D. Riboldi, and L. Tasca, "LiDARenabled model predictive control of wind turbines with real-time capabilities, " Renew. Energy, vol. 71, pp. 442-452, Nov. 2014. https://www.sciencedirect.com/science/article/pii/S0960148114003024
|
[54] |
L. C. Henriksen, M. H. Hansen, and N. K. Poulsen, "Wind turbine control with constraint handling:a model predictive control approach, " IET Contr. Theory Appl., vol. 6, no. 11, pp. 1722-1734, Jul. 2013. https://www.researchgate.net/publication/260586571_Wind_turbine_control_with_constraint_handling_A_model_predictive_control_approach
|
[55] |
R. Galeazzi, K. T. Borup, H. Niemann, N. K. Poulsen, and F. Caponetti, "Adaptive backstepping control of lightweight tower wind turbine, " in Proc. American Control Conf., Chicago, IL, USA, pp. 3058-3065. https://www.researchgate.net/publication/272683944_Adaptive_Backstepping_Control_of_Lightweight_Tower_Wind_Turbine
|
[56] |
V. Bobanac and M. Vašak, "Adaptive $H_{\infty}$ control of large wind turbines, " Proc. 2015 IEEE Int. Conf. Industrial Technology (ICIT), Seville, Spain, 2015, pp. 85-92.
|
[57] |
C. Vivas, F. Castañ, and F. R. Rubio, "Adaptive $H_{\infty}$ control of variablespeed Wind Turbines with wind speed estimator, " in Proc. European Control Conf., Budapest, Hungary, 2009, pp. 4217-4222.
|
[58] |
X. J. Yao, Y. M. Liu, and C. C. Guo, "Adaptive fuzzy sliding-mode control in variable speed adjustable pitch wind turbine, " in Proc. IEEE Int. Conf. Automation and Logistics, Jinan, China, 2007, pp. 313-318, 2007. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004338578
|
[59] |
H. Jafarnejadsani, J. Pieper, and J. Ehlers, "Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network, " IEEE Trans. Contr. Syst. Technol., vol. 21, no. 6, pp. 2264-2272, Nov. 2013. https://ieeexplore.ieee.org/document/6418007
|
[60] |
D. W. Xiang, J. C. Turu, S. M. Muratel, and T. Wang, "On-site LVRT testing method for full-power converter wind turbines, " IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 395-403, Jan. 2017. https://www.researchgate.net/publication/310824815_On-site_LVRT_Testing_Method_for_Full_Power_Converter_Wind_Turbines
|
[61] |
M. Nasiri and R. Mohammadi, "Peak current limitation for grid side inverter by limited active power in PMSG-based wind turbines during different grid faults, " IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 3 -12, Jan. 2017. https://ieeexplore.ieee.org/document/7486131
|
[62] |
J. Mohammadi, S. Afsharnia, S. Vaez-zadeh, and S. Farhangi, "Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults, " IET Renew. Power Generat., vol. 10, no. 8, pp. 1114-1122, Sep. 2016.
|
[63] |
H. M. Yassin, H. H. Hanafy, and M. M. Hallouda, "Enhancement low-voltage ride through capability of permanent magnet synchronous generator-based wind turbines using interval type-2 fuzzy control, " IET Renew. Power Generat., vol. 10, no. 3, pp. 339-348, Feb. 2016.
|
[64] |
J. N. Sakamuri, Z. H. Rather, J. Rimez, M. Altin, ö. Göksu, and N. A. Cutululis, "Coordinated voltage control in offshore HVDC connected cluster of wind power plants, " IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1592-1601, Oct. 2016. https://ieeexplore.ieee.org/document/7470498
|
[65] |
A. Kirakosyan, M. S. El Moursi, P. Kanjiya, and V. Khadkikar, "A nine switch converter-based fault ride through topology for wind turbine applications, " IEEE Trans. Power Delivery, vol. 31, no. 4, pp. 1757- 1766, Aug. 2016. https://ieeexplore.ieee.org/document/7442868
|
[66] |
J. B. Hu, Q. Hu, B. Wang, H. Y. Tang, and Y. N. Chi, "Small signal instability of PLL-synchronized type-4 wind turbines connected to high-impedance AC grid during LVRT, " IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1676-1687, Dec. 2016. https://ieeexplore.ieee.org/document/7486001
|
[67] |
A. Egea-Àlvarez, M. Aragüés-Peñalba, O. Gomis-Bellmunt, J. Rull-Duran, and A. Sudrià-Andreu, "Sensorless control of a power converter for a cluster of small wind turbines, " IET Renew. Power Generat., vol. 10, no. 5, pp. 721-728, Apr. 2016. https://ieeexplore.ieee.org/document/7456545
|
[68] |
S. I. Nanou and S. A. Papathanassiou, "Grid code compatibility of VSC-HVDC connected offshore wind turbines employing power synchronization control, " IEEE Trans. Power Syst., vol. 31, no. 6, pp. 5042-5050, Nov. 2016. https://ieeexplore.ieee.org/abstract/document/7386719
|
[69] |
V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, "Highpower wind energy conversion systems:state-of-the-art and emerging technologies, " Proc. IEEE, vol. 103, no. 5, pp. 740-788, May 2015. https://ieeexplore.ieee.org/document/7109820
|
[70] |
L. Sun, X. M. Yuan, J. B. Hu, and W. He "Inertial control methods of variable-speed wind turbine:comparative studies, " in Proc. IEEE Power & Energy Society General Meeting, Denver, CO, USA, 2015, pp. 1-5. https://ieeexplore.ieee.org/document/7286577
|
[71] |
S. Wang, J. B. Hu, X. M. Yuan, and L. Sun, "On inertial dynamics of virtual-synchronous-controlled DFIG-based wind turbines, " IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1691-1702, Dec. 2015. https://ieeexplore.ieee.org/document/7202890
|
[72] |
E. Muljadi, V. Gevorgian, M. Singh, and S. Santoso "Understanding inertial and frequency response of wind power plants, " in Proc. IEEE Power Electronics and Machines in Wind Applications, Denver, CO, USA, 2012, pp. 1-8, 2012. https://www.nrel.gov/docs/fy12osti/55335.pdf
|
[73] |
J. Morren, J. Pierik, and S. W. H. de Haan, "Inertial response of variable speed wind turbines, " Electrical Power Syst. Res., vol. 76, no. 11, pp. 980-987, Jul. 2006. https://wenku.baidu.com/view/775b0980ec3a87c24028c459.html
|
[74] |
L. Shang, J. B. Hu, X. M. Yuan, and Y. N. Chi "Understanding Inertial Response of Variable-Speed Wind Turbines by Defined Internal Potential Vector, " Energies, vol. 10, pp. 22, Dec. 2016. https://www.researchgate.net/publication/311959232_Understanding_Inertial_Response_of_Variable-Speed_Wind_Turbines_by_Defined_Internal_Potential_Vector
|
[75] |
J. B. Hu, H. Nian, B. Hu, Y. K. He, and Z. Q. Zhu, "Direct active and reactive power regulation of DFIG using sliding-mode control approach, " IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 1028-1039, Dec. 2010. https://www.researchgate.net/publication/224145525_Direct_Active_and_Reactive_Power_Regulation_of_DFIG_Using_Sliding-Mode_Control_Approach
|
[76] |
A. Abdel-Khalik, A. Elserougi, A. Massoud, and S. Ahmed, "A power control strategy for flywheel doubly-fed induction machine storage system using artificial neural network, " Electric. Power Syst. Res., vol. 96, pp. 267-276, Mar. 2013. https://www.sciencedirect.com/science/article/abs/pii/S0378779612003458
|
[77] |
A. Yousefi-Talouki, E. Pouresmaeil, and B. N. Jørgensen, "Active and reactive power ripple minimization in direct power control of matrix converter-fed DFIG, " Int. J. Electric. Power Energy Syst., vol. 63, pp. 600-608, Dec. 2014. https://www.sciencedirect.com/science/article/pii/S0142061514003901
|
[78] |
P. K. Gayen, D. Chatterjee, and S. K. Goswami, "Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator), " Energy, vol. 89, pp. 461-472, Sep. 2015. https://www.sciencedirect.com/science/article/abs/pii/S0360544215007331
|
[79] |
E. F. Camacho and C. Bordons, Model Predictive Control. London, UK:Springer-Verlag, 1999.
|
[80] |
L. Grune and J. Pannek, Nonlinear Model Predictive Control:Theory and Algorithms. London, UK:Springer-Verlag, 2007.
|
[81] |
M. Cannon, "Efficient nonlinear model predictive control algorithms, " Ann. Rev. Contr., vol. 28, no. 2, pp. 229-237, 2004. doi: 10.1016/j.arcontrol.2004.05.001
|
[82] |
J. F. Hu, J. G. Zhu, and D. G. Dorrell, "Model-predictive direct power control of doubly-fed induction generators under unbalanced grid voltage conditions in wind energy applications, " IET Renew. Power Generat., vol. 8, no. 6, pp. 687-695, Aug. 2014. https://ieeexplore.ieee.org/document/6867446
|
[83] |
R. Aissou, T. Rekioua, D. Rekioua, and A. Tounzi, "Robust nonlinear predictive control of permanent magnet synchronous generator turbine using DSPACE hardware, " Int. J. Hydrogen Energy, vol. 41, no. 45, pp. 21047-21056, Dec. 2016. https://www.sciencedirect.com/science/article/pii/S0360319916309570
|
[84] |
A. Koerber and R. King, "Combined feedback-feedforward control of wind turbines using state-constrained model predictive control, " IEEE Trans. Contr. Syst. Technol., vol. 21, no. 4, pp. 1117-1128, Jul. 2013. https://ieeexplore.ieee.org/document/6522174
|
[85] |
C. A. Evangelista, A. Pisano, P. Puleston, and E. Usai, "Receding horizon adaptive second-order sliding mode control for doubly-fed induction generator based wind turbine, " IEEE Trans. Contr. Syst. Technol., vol. 25, no. 1, pp. 73-84, Jan. 2017. https://ieeexplore.ieee.org/document/7442098
|
[86] |
X. J. Liu and X. B. Kong, "Nonlinear model predictive control for DFIG-based wind power generation, " IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 1046-1055, Oct. 2014. https://ieeexplore.ieee.org/document/6646295
|
[87] |
P. F. Odgaard, L. F. S. Larsen, R. Wisniewski, and T. G. Hovgaard, "On using Pareto optimality to tune a linear model predictive controller for wind turbines, " Renew. Energy, vol. 87, pp. 884-891, Mar. 2016. https://www.sciencedirect.com/science/article/pii/S0960148115303463
|
[88] |
S. Abulanwar, W. H. Hu, Z. Chen, and F. Iov, "Adaptive voltage control strategy for variable-speed wind turbine connected to a weak network, " IET Renew. Power Generat., vol. 10, no. 2, pp. 238-249, Feb. 2016. https://ieeexplore.ieee.org/document/7395059
|
[89] |
K. E. Johnson, L. Y. Pao, M. J. Balas, and L. J. Fingersh, "Control of variable-speed wind turbines:standard and adaptive techniques for maximizing energy capture, " IEEE Contr. Syst. Mag., vol. 26, no. 3, pp. 70-81, Jun. 2006. https://ieeexplore.ieee.org/document/1636311
|
[90] |
Q. S. Luo, Q. M. Yang, C. Han, and P. Cheng, "Pitch angle controller of variable-speed wind turbine based on L1 adaptive control theory, " in Proc. Int. Conf. Mechatronics and Control (ICMC), Jinzhou, China, 2014, pp. 955-960.
|
[91] |
S. A. Frost, M. J. Balas, and A. D. Wright, "Direct adaptive control of a utility-scale wind turbine for speed regulation, " Int. J. Robust Nonlin. Contr., vol. 19, no. 1, pp. 59-71, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1a31de9acf98a7622be4ebf03bb4f7e
|
[92] |
J. Y. Gong and R. Xie, "Adaptive control of PMSG-based small wind turbines in region Ⅱ, " in Proc. 35th Chinese Control Conf., Chengdu, China, 2016, pp. 8518-8522.
|
[93] |
O. Barambones and J. M. G. de Durana, "Adaptive sliding mode control strategy for a wind turbine systems using a HOSM wind torque observer, " in Proc. IEEE Int. Energy Conf. (ENERGYCON), Leuven, Belgium, 2016, pp. 1-6.
|
[94] |
K. Shi, C. K. Zhang, X. Zhou, and L. Jiang, "Nonlinear adaptive power control for DFIG-based wind turbine under unbalanced network conditions, " in Proc. IEEE 8th Int. Power Electronics and Motion Control Conf. (IPEMC-ECCE Asia), Hefei, China, 2016, pp. 1496-1502.
|
[95] |
M. Koumir, A. El Bakri, and I. Boumhidi, "Optimal control for a variable speed wind turbine based on extreme learning machine and adaptive particle swarm optimization, " in Proc. 5th Int. Conf. Systems and Control, Marrakesh, Morocco, 2016, pp. 151-156.
|
[96] |
S. M. Muyeen, A. Al-durra, and H. M. Hasanien, "Application of an adaptive neuro-fuzzy controller for speed control of switched reluctance generator driven by variable speed wind turbine, " in Proc. Modern Electric Power Systems (MEPS), Wroclaw, Poland, 2015, pp. 1-6. https://ieeexplore.ieee.org/document/7477210
|
[97] |
A. Tohidi, H. Hajieghrary, and M. A. Hsieh, "Adaptive disturbance rejection control scheme for DFIG-based wind turbine:theory and experiments, " IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2006-2015, May-Jun. 2016.
|
[98] |
O. Barambones and J. M. G. de Durana, "Wind turbine control scheme based on adaptive sliding mode controller and observer, " in Proc. IEEE 20th Conf. Emerging Technologies and Factory Automation, Luxembourg, Luxembourg, 2015, pp. 1-7. https://ieeexplore.ieee.org/document/7301531
|
[99] |
S. Rajendran and D. Jena, "Adaptive nonsingular terminal sliding mode control for variable speed wind turbine, " in Proc. IEEE 28th Canadian Conf. Electrical and Computer Engineering, Halifax, NS, Canada, 2015, pp. 937-942. https://www.researchgate.net/publication/283102427_Adaptive_nonsingular_terminal_sliding_mode_control_for_variable_speed_wind_turbine
|
[100] |
J. Chen, L. Jiang, W. Yao, and Q. H. Wu, "Perturbation estimation based nonlinear adaptive control of a full-rated converter wind turbine for fault ride-through capability enhancement, " IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2733-2743, Nov. 2014. https://ieeexplore.ieee.org/document/6784484
|
[101] |
V. Azimi, M. B. Menhaj, and A. Fakharian, "Adaptive control of a wind turbine based on neural networks, " in Proc. 13th Iranian Conf. Fuzzy Systems (IFSC), Qazvin, Iran, 2013, pp. 1-6. https://www.researchgate.net/publication/261156273_Adaptive_control_of_a_wind_turbine_based_on_neural_networks
|
[102] |
P. Bagheri and Q. Sun, "Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics, " ISA Trans., vol. 63, pp. 233-241, Jul. 2016. https://www.sciencedirect.com/science/article/abs/pii/S0019057816300532
|
[103] |
D. C. Phan and S. Yamamoto, "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking, " Energy, vol. 111, pp. 377-388, Sep. 2016. https://www.sciencedirect.com/science/article/abs/pii/S0360544216306946
|
[104] |
A. Hatami and B. Moetakef-Imani, "Innovative adaptive pitch control for small wind turbine fatigue load reduction, " Mechatronics, vol. 40, pp. 137-145, Dec. 2016. https://www.sciencedirect.com/science/article/abs/pii/S0957415816301155
|
[105] |
E. Assareh and M. Biglari, "A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm, " Renew. Sustain. Energy Rev., vol. 51, pp. 1023-1037, Nov. 2015.
|
[106] |
A. D. Wright, "Modern control design for flexible wind turbines, " Ph.D. dissertation, Dept. Aerosp. Eng. Sci., Univ. Colorado, Colorado, USA, 2003.
|
[107] |
P. F. Odgaard, J. Stoustrup, and M. Kinnaert, "Fault tolerant control of wind turbines-a benchmark model, " IFAC Proc. Vol., vol. 42, no. 8, pp. 155-160, 2009. doi: 10.3182/20090630-4-ES-2003.00026
|
[108] |
P. F. Odgaard and J. Stoustrup, "Fault tolerant control of wind turbines using unknown input observers, " IFAC Proc. Vol., vol. 45, no.20, pp. 313-318, Jan. 2012. https://www.sciencedirect.com/science/article/pii/S1474667016347735
|
[109] |
P. F. Odgaard, C. Damgarrd, and R. Nielsen, "On-line estimation of wind turbine power coefficients using unknown input observers, " IFAC Proc. Vol., vol. 41, no. 2, pp. 10646-10651, 2008. doi: 10.3182/20080706-5-KR-1001.01804
|
[110] |
J. Friis, E. Nielsen, J. Bonding, F. D. Adegas, J. Stoustrup, and P. F. Odgaard, "Repetitive model predictive approach to individual pitch control of wind turbines, " in Proc. 50th IEEE Conf. Decision and Control and European Control Conf., Orlando, FL, USA, 2011, pp. 3664-3670.
|
[111] |
H. Schulte and E. Gauterin, "Fault-tolerant control of wind turbines with hydrostatic transmission using Takagi-Sugeno and sliding mode techniques, " Ann. Rev. Contr., vol. 40, pp. 82-92, 2015. doi: 10.1016/j.arcontrol.2015.08.003
|
[112] |
U. Giger, P. Kühne, and H. Schulte, "Fault tolerant and optimal control of wind turbines with distributed high-speed generators, " Energies, vol. 10, no. 2, pp. 149, Jan. 2017. https://www.researchgate.net/publication/312874113_Fault_Tolerant_and_Optimal_Control_of_Wind_Turbines_with_Distributed_High-Speed_Generators
|
[113] |
P. Kühne, F. Pöshke, and H. Schulte, "Fault estimation and fault-tolerant control of the FAST NREL 5-MW reference wind turbine using a proportional multi-integral observer, " Int. J. Adapt. Contr. Sign. Process., vol. 32, no. 4, pp. 568-585, Apr. 2018. doi: 10.1002/acs.2800
|
[114] |
F. Pöshke, J. Fortmann, and H. Schulte, "Nonlinear wind turbine controller for variable power generation in full load region, " in Proc. American Control Conf., Seattle, WA, USA, 2017, vol. 32, pp. 1389- 1400.
|
[115] |
M. S. Shake and R. J. Patton, "Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model, " Eng. Appl. Artific. Intell., vol. 34, pp. 1-12, Sep. 2014. https://www.sciencedirect.com/science/article/abs/pii/S0952197614000815
|
[116] |
F. M. Shi and R. Patton, "An active fault tolerant control approach to an offshore wind turbine model, " Renew. Energy, vol. 75, pp. 788-798, Mar. 2015. https://www.sciencedirect.com/science/article/pii/S0960148114006880
|
[117] |
M. Sami and R. J. Patton, "Fault tolerant adaptive sliding mode controller for wind turbine power maximisation, " IFAC Proc. Vol., vol. 45, no. 13, pp. 499-504, 2012. doi: 10.3182/20120620-3-DK-2025.00144
|
[118] |
H. Badihi, Y. M. Zhang, and H. Hong, "Fuzzy gain-scheduled active fault-tolerant control of a wind turbine, " J. Franklin Instit., vol. 351, no. 7, pp. 3677-3706, Jul. 2014. https://www.sciencedirect.com/science/article/pii/S0016003213001798
|
[119] |
H. Badihi, Y. M. Zhang, and H. Hong, "Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches, " Appl. Energy, vol. 201, pp. 284-307, Sep. 2017.
|
[120] |
V. A. Akpan and G. D. Hassapis, "Nonlinear model identification and adaptive model predictive control using neural networks, " ISA Trans., vol. 50, no. 2, pp. 177-194, Apr. 2011. https://www.sciencedirect.com/science/article/abs/pii/S0019057810001308
|
[121] |
B. Zhu and X. H. Xia, "Adaptive model predictive control for unconstrained discrete-time linear systems with parametric uncertainties, " IEEE Trans. Autom. Contr., vol. 61, no. 10, pp. 3171-3176, Oct. 2016. https://ieeexplore.ieee.org/document/7347388
|
[122] |
O. Bello, Y. Hamam, and K. Djouani, "Fuzzy dynamic modelling and predictive control of a coagulation chemical dosing unit for water treatment plants, " J. Electric. Syst. Inf. Technol., vol. 1, no. 2, pp. 129- 143, Sep. 2014. https://www.researchgate.net/publication/265387854_Fuzzy_dynamic_modelling_and_predictive_control_of_a_coagulation_chemical_dosing_unit_for_water_treatment_plants
|
[123] |
T. H. Kim and T. Sugie, "Adaptive receding horizon predictive control for constrained discrete-time linear systems with parameter uncertainties, " Int. J. Contr., vol. 81, no. 1, pp. 62-73, Sep. 2008. https://www.researchgate.net/publication/233369036_Adaptive_receding_horizon_predictive_control_for_constrained_discrete-time_linear_systems_with_parameter_uncertainties
|
[124] |
R. Dubay, M. Abu-Ayyad, and J. M. Hernandez, "A nonlinear regression model-based predictive control algorithm, " ISA Trans, vol. 48, no. 2, pp. 62-73, Apr. 2009. https://www.sciencedirect.com/science/article/abs/pii/S0019057808000943
|
[125] |
H. Fukushima, T. H. Kim, and T. Sugie, "Adaptive model predictive control for a class of constrained linear systems based on the comparison model, " Automatica, vol. 43, no. 2, pp. 301-308, Feb. 2007. https://www.sciencedirect.com/science/article/pii/S000510980600375X
|
[126] |
M. Khazaee, A. H. D. Markazi, and E. Omidi, "Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with boundknown input delay, " ISA Trans., vol. 59, pp. 314-324, Nov. 2015. https://www.sciencedirect.com/science/article/abs/pii/S001905781500244X
|
[127] |
S. Bououden, M. Chadli, and H. R. Karimi, "An ant colony optimization-based fuzzy predictive control approach for nonlinear processes, " Inf. Sci., vol. 299, pp. 143-158, Apr. 2015. https://www.sciencedirect.com/science/article/pii/S002002551401161X
|
[128] |
V. Adetola, D. DeHaan, and M. Guay, "Adaptive model predictive control for constrained nonlinear systems, " Syst. Contr. Lett., vol. 58, no. 5, pp. 320-326, May 2009. https://www.sciencedirect.com/science/article/pii/S0167691108002120
|
[129] |
V. Bobal, M. Kubalcik, P. Dostal, and J. Matejicek, "Adaptive predictive control of time-delay systems, " Comput. Math. Appl., vol. 66, no. 2, pp. 165-176, Aug. 2016.
|
[130] |
Y. J. Zhang, T. Y. Chai, H. Wang, J. Fu, L. Y. Zhang, and Y. G. Wang, "An adaptive generalized predictive control method for nonlinear systems based on ANFIS and multiple models, " IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1070-1082, Dec. 2010. https://ieeexplore.ieee.org/document/5535081
|