IEEE/CAA Journal of Automatica Sinica
Citation: | Jiajun Wang and Tufan Kumbasar, "Parameter Optimization of Interval Type-2 Fuzzy Neural Networks Based on PSO and BBBC Methods," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 247-257, Jan. 2019. doi: 10.1109/JAS.2019.1911348 |
[1] |
C. T. Lin, N. R. Pal, S. L. Wu, Y. T. Liu, and Y. Y. Lin, "An interval type-2 Neural Fuzzy System for online system identification and feature elimination, " IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 7, pp. 1442-1455, Jul. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25163074
|
[2] |
Y. Y. Lin, S. H. Liao, J. Y. Chang, and C. T. Lin, "Simplified interval type-2 fuzzy neural networks, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 5, pp. 959-969, May 2014. http://www.ncbi.nlm.nih.gov/pubmed/24808041
|
[3] |
J. R. Castro, O. Castillo, P. Melin, and A. Rodríguez-Díaz, "A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks, " Inf. Sci., vol. 179, no. 13, pp. 2175-2193, Jun. 2009. http://dl.acm.org/citation.cfm?id=1531033
|
[4] |
O. Castillo, J. R. Castro, P. Melin, and A. Rodriguez-Diaz, "Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction, " Soft Comput., vol. 18, no. 6, pp. 1213-1224, Jun. 2014. http://dl.acm.org/citation.cfm?id=2629808.2629810
|
[5] |
A. M. El-Nagar, "Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network --- a novel structure, " ISA Trans., vol. 72, pp. 205-217, Jan. 2018. http://www.sciencedirect.com/science/article/pii/S0019057817306055
|
[6] |
E. Kayacan, O. Cigdem, and O. Kaynak, "Sliding mode control approach for online learning as applied to type-2 fuzzy neural networks and its experimental evaluation, " IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3510-3520, Sep. 2012. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Industrial%20Electronics&volume=59&issue=9&spage=3510
|
[7] |
M. M. Zirkohi and T. C. Lin, "Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system, " Nonlinear Dyn., vol. 71, no. 1, pp. 513-526, Jan. 2014. doi: 10.1007/s11071-014-1683-8
|
[8] |
A. J. Khakshour and M. A. Khanesar, "Model reference fractional order control using type-2 fuzzy neural networks structure: implementation on a 2-DOF helicopter, " Neurocomputing, vol. 193, pp. 268-279, Jun. 2016. http://dl.acm.org/citation.cfm?id=2929183
|
[9] |
Y. H. Chang and W. S. Chan, "Adaptive dynamic surface control for uncertain nonlinear systems with interval type-2 fuzzy neural networks, " IEEE Trans. Cybern., vol. 44, no. 2, pp. 293-304, Feb. 2014. http://www.ncbi.nlm.nih.gov/pubmed/23757550
|
[10] |
C. J. Kim and D. Chwa, "Obstacle avoidance method for wheeled mobile robots using interval type-2 fuzzy neural network, " IEEE Trans. Fuzzy Syst., vol. 23, no. 3, pp. 677-687, Jun. 2015. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6810171
|
[11] |
S. F. Toloue, M. R. Akbarzadeh, A. Akbarzadeh, and M. Jalaeian-F, "Position tracking of a 3-PSP parallel robot using dynamic growing interval type-2 fuzzy neural control, " Appl. Soft Comput., vol. 37, pp. 1 -14, Dec. 2015.
|
[12] |
A. M. El-Nagar and M. El-Bardini, "Interval type-2 fuzzy neural network controller for a multivariable anesthesia system based on a hardware-in-the-loop simulation, " Artif. Intell. Med., vol. 61, no. 1, pp. 1-10, May 2014.
|
[13] |
F. J. Lin, S. Y. Chen, P. H. Chou, and P. H. Shieh, "Interval type-2 fuzzy neural network control for X-Y-Theta motion control stage using linear ultrasonic motors, " Neurocomputing, vol. 72, no. 4-6, pp. 1138-1151, Jan. 2009. http://www.ncbi.nlm.nih.gov/pubmed/17186927
|
[14] |
F. J. Lin and P. H. Chou, "Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network, " IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 178-193, Jan. 2009. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Industrial%20Electronics&volume=56&issue=1&spage=178
|
[15] |
T. C. Lin, "Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems, " Commun. Nonlinear Sci. Numer. Simul., vol. 15, no. 12, pp. 4084-4099, Dec. 2010. http://www.sciencedirect.com/science/article/pii/S1007570410000675
|
[16] |
F. Gaxiola, P. Melin, F. Valdez, and O. Castillo, "Interval type-2 fuzzy weight adjustment for backpropagation neural networks with application in time series prediction, " Inf. Sci., vol. 260, pp. 1-14, Mar. 2014. http://dl.acm.org/citation.cfm?id=2566448
|
[17] |
V. Sumati, P. Chellapilla, S. Paul, and L. Singh, "Parallel interval type-2 subsethood neural fuzzy inference system, " Expert Syst. Appl., vol. 60, pp. 156-168, Oct. 2016. http://www.sciencedirect.com/science/article/pii/S0957417416302068
|
[18] |
C. C. Chen and G. Vachtsevanos, "Bearing condition prediction considering uncertainty: an interval type-2 fuzzy neural network approach, " Rob. Comput. -Integr. Manuf., vol. 28, no. 4, pp. 509-516, Aug. 2012. http://www.sciencedirect.com/science/article/pii/S0736584512000178
|
[19] |
C. F. Juang and C. Y. Chen, "An interval type-2 neural fuzzy chip with on-chip incremental learning ability for time-varying data sequence prediction and system control, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 216-228, Jan. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24806655
|
[20] |
C. F. Juang, W. Y. Chen, and C. W. Liang, "Speedup of learning in interval type-2 neural fuzzy systems through graphic processing units, " IEEE Trans. Fuzzy Syst., vol. 23, no. 4, pp. 1286-1298, Aug. 2015. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=23&issue=4&spage=1286
|
[21] |
C. F. Juang and P. H. Wang, "An interval type-2 neural fuzzy classifier learned through soft margin minimization and its human posture classification application, " IEEE Trans. Fuzzy Syst., vol. 23, no. 5, pp. 1474- 1487, Oct. 2015. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=23&issue=5&spage=1474
|
[22] |
C. S. Chen, "Supervisory interval type-2 TSK neural fuzzy network control for linear microstepping motor drives with uncertainty observer, " IEEE Trans. Power Electron., vol. 26, no. 7, pp. 2049-2064, Jul. 2011. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Power%20Electronics&volume=26&issue=7&spage=2049
|
[23] |
G. D. Wu and P. H. Huang, "A vectorization-optimization-method-based type-2 fuzzy neural network for noisy data classification, " IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 1-15, Feb. 2013. http://ieeexplore.ieee.org/document/6195003/
|
[24] |
Y. Y. Lin, J. Y. Chang, and C. T. Lin, "A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications, " IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 447-459, Feb. 2014.
|
[25] |
C. H. Wang, C. S. Cheng, and T. T. Lee, "Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN), " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 3, pp. 1462-1477, Jun. 2004. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM15484917
|
[26] |
Y. Bibi, O. Bouhali, and T. Bouktir, "Petri type 2 fuzzy neural networks approximator for adaptive control of uncertain non-linear systems, " IET Control Theory Appl., vol. 11, no. 17, pp. 3130-3136, Nov. 2017. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Iet%20Control%20Theory%20and%20Applications&volume=11&issue=17&spage=3130
|
[27] |
Y. Y. Lin, J. Y. Chang, N. R. Pal, and C. T. Lin, "A mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS) with self-evolving structure and parameters, " IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 492-509, Jun. 2013. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=21&issue=3&spage=492
|
[28] |
C. F. Juang, R. B. Huang, and Y. Y. Lin, "A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing, " IEEE Trans. Fuzzy Syst., vol. 17, no. 5, pp. 1092-1105, Oct. 2009. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=17&issue=5&spage=1092
|
[29] |
C. F. Juang and C. Y. Chen, "Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability, " IEEE Trans. Cybern., vol. 43, no. 6, pp. 1781-1795, Dec. 2013. http://www.ncbi.nlm.nih.gov/pubmed/24273147
|
[30] |
B. I. Choi and F. C. H. Rhee, "Interval type-2 fuzzy membership function generation methods for pattern recognition, " Inf. Sci., vol. 179, no. 13, pp. 2102-2122, Jun. 2009. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Information%20Sciences&volume=179&issue=13&spage=2102
|
[31] |
M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak, "Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation, " IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4443-4455, Nov. 2012. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Industrial%20Electronics&volume=59&issue=11&spage=4443
|
[32] |
M. A. Khanesar, E. Kayacan, M. Reyhanoglu, and O. Kaynak, "Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions, " IEEE Trans. Cybern., vol. 45, no. 4, pp. 858-868, Apr. 2015. http://ieeexplore.ieee.org/document/7027198/
|
[33] |
J. J. Wang, "A new type of fuzzy membership function designed for interval type-2 fuzzy neural network, " Acta Autom. Sinica, vol. 43, no. 8, pp. 1425-1433, Aug. 2017. http://d.wanfangdata.com.cn/Periodical_zdhxb201708014.aspx
|
[34] |
Q. L. Liang and J. M. Mendel, "Interval type-2 fuzzy logic systems: theory and design, " IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535-550, Oct. 2000. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=14&issue=6&spage=808
|
[35] |
J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Upper Sadder River, NJ, USA: Prentice-Hall, 2001.
|
[36] |
N. N. Karnik, J. M. Mendel, and Q. L. Liang, "Type-2 fuzzy logic systems, " IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 643-658, Dec. 1999. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=7&issue=6&spage=643
|
[37] |
D. R. Wu, "Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons, " IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 80-99, Feb. 2013. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=21&issue=1&spage=80
|
[38] |
X. W. Liu, J. M. Mendel, and D. R. Wu, "Study on enhanced Karnik-Mendel algorithms: initialization explanations and computation improvements, " Inf. Sci., vol. 184, no. 1, pp. 75-91, Feb. 2012. http://dl.acm.org/citation.cfm?id=2051675
|
[39] |
D. R. Wu and J. M. Mendel, "Enhanced Karnik-Mendel algorithms, " IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp. 923-934, Aug. 2009.
|
[40] |
S. Coupland and R. John, "Geometric type-1 and type-2 fuzzy logic systems, " IEEE Trans. Fuzzy Syst., vol. 15, no. 1, pp. 3-15, Feb. 2007. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=15&issue=1&spage=3
|
[41] |
J. M. Mendel and X. W. Liu, "Simplified interval type-2 fuzzy logic systems, " IEEE Trans. Fuzzy Syst., vol. 21, no. 6, pp. 1056-1069, Dec. 2013. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=21&issue=6&spage=1056
|
[42] |
S. Hassan, M. A. Khanesar, E. Kayacan, J. Jaafar, and A. Khosravi, "Optimal design of adaptive type-2 neuro-fuzzy systems: a review, " Appl. Soft Comput., vol. 44, pp. 134-143, Jul. 2016. http://dl.acm.org/citation.cfm?id=2936550
|
[43] |
M. Pratama, J. Lu, E. Lughofer, G. Q. Zhang, and M. J. Er, "An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks, " IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1175-1192, Oct. 2017. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=25&issue=5&spage=1175
|
[44] |
Z. H. Deng, K. S. Choi, L. B. Cao, and S. T. Wang, "T2FELA: type-2 fuzzy extreme learning algorithm for fast training of interval type-2 TSK fuzzy logic system, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 4, pp. 664-676, Apr. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24807945
|
[45] |
Q. L. Liang and J. M. Mendel, "Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filter, " IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 551-563, Oct. 2000. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Fuzzy%20Systems&volume=8&issue=5&spage=551
|
[46] |
E. Kayacan, E. Kayacan, and M. A. Khanesar, "Identification of nonlinear dynamic systems using type-2 fuzzy neural networks — a novel learning algorithm and a comparative study, " IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1716-1724, Mar. 2015. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6871316
|
[47] |
R. H. Abiyev and O. Kaynak, "Type 2 fuzzy neural structure for identification and control of time-varying plants, " IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4147-4159, Dec. 2010. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Industrial%20Electronics&volume=57&issue=12&spage=4147
|
[48] |
L. Liu, Z. S. Wang, and H. G. Zhang, "Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters, " IEEE Trans. Autom. Sci. Eng., vol. 14, no. 1, pp. 299-313, Jan. 2017. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=IEEE%20Transactions%20on%20Automation%20Science%20and%20Engineering&atitle=Adaptive%20Fault-Tolerant%20Tracking%20Control%20for%20MIMO%20Discrete-Time%20Systems%20via%20Reinforcement%20Learning%20Algorithm%20With%20Less%20Learning%20Parameters
|
[49] |
H. G. Zhang, Z. S. Wang, and D. R. Liu, "Global asymptotic stability of recurrent neural networks with multiple time-varying delays, " IEEE Trans. Neural Netw., vol. 19, no. 5, pp. 855-873, May 2008. http://www.ncbi.nlm.nih.gov/pubmed/18467214?dopt=AbstractPlus
|
[50] |
F. Gaxiola, P. Melin, F. Valdez, J. R. Castro, and O. Castillo, "Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO, " Appl. Soft Comput., vol. 38, pp. 860- 871, Jan. 2016. http://dl.acm.org/citation.cfm?id=2873822.2873937
|
[51] |
H. G. Han, W. Lu, Y. Hou, and J. F. Qiao, "An adaptive-PSO-based self-organizing RBF neural network, " IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 104-117, Jan. 2018. http://www.ncbi.nlm.nih.gov/pubmed/28113788
|
[52] |
M. Samani, M. Tafreshi, I. Shafieenejad, and A. A. Nikkhah, "Minimum-time open-loop and closed-loop optimal guidance with GA-PSO and neural fuzzy for Samarai MAV flight, " IEEE Aerosp. Electron. Syst. Mag., vol. 30, no. 5, pp. 28-37, May 2015. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7119822
|
[53] |
O. K. Erol and I. Eksin, "A new optimization method: Big Bang-Big Crunch, " Adv. Eng. Softw., vol. 37, no. 2, pp. 106-111, Feb. 2006. http://dl.acm.org/citation.cfm?id=1641063
|
[54] |
T. Kumbasar and H. Hagras, "Big Bang-Big Crunch optimization based interval type-2 fuzzy PID cascade controller design strategy, " Inf. Sci., vol. 282, pp. 277-295, Oct. 2014. http://dl.acm.org/citation.cfm?id=2658296.2658616
|
[55] |
T. Kumbasar and H. Hagras, "A self-tuning zSlices-based general type-2 fuzzy PI controller, " IEEE Trans. Fuzzy Syst., vol. 23, no. 4, pp. 991- 1013, Aug. 2015. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6849437
|
[56] |
H. Koruk and K. Y. Sanliturk, "Optimisation of damping treatments based on big bang-big crunch and modal strain energy methods, " J. Sound Vib., vol. 333, no. 5, pp. 1319-1330, Feb. 2014. http://www.sciencedirect.com/science/article/pii/S0022460X13008730
|