IEEE/CAA Journal of Automatica Sinica
Citation: | Jonathan Tuck, David Hallac and Stephen Boyd, "Distributed Majorization-Minimization for Laplacian Regularized Problems," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 45-52, Jan. 2019. doi: 10.1109/JAS.2019.1911321 |
[1] |
S. Boyd, E. Busseti, S. Diamond, R. N. Kahn, K. Koh, P. Nystrup, and J. Speth, "Multi-period trading via convex optimization, " Foundations and Trends in Optimization, vol. 3, no. 1, pp. 1- 76, Apr. 2017.
|
[2] |
D. Hallac, Y. Park, S. Boyd, and J. Leskovec, "Network inference via the time-varying graphical lasso, " in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 205-213, 2017.
|
[3] |
M. Yin, J. Gao, and Z. Lin, "Laplacian regularized low-rank representation and its applications, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 3, pp. 504-517, Mar. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27046494
|
[4] |
J. Pang and G. Cheung, "Graph laplacian regularization for image denoising: Analysis in the continuous domain, " IEEE Transactions on Image Processing, vol. 26, no. 4, pp. 1770- 1785, April 2017.[Online]. Available: doi: https://doi.org/10.1109/TIP.2017.2651400
|
[5] |
D. Slepcev and M. Thorpe, "Analysis of p-laplacian regularization in semi-supervised learning, " ArXiV preprint, Oct. 2017.
|
[6] |
R. K. Ando and T. Zhang, "Learning on graph with Laplacian regularization, " Conference on Neural Information Processing Systems, 2006. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6287089
|
[7] |
S. Melacci and M. Belkin, "Laplacian support vector machines trained in the primal, " Journal of Machine Learning Research, vol. 12, pp. 1149-1184, Jul. 2011.
|
[8] |
K. Lange, MM Optimization Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2016.
|
[9] |
Y. Sun, P. Babu, and D. Palomar, "Majorization-minimization algorithms in signal processing, communications, and machine learning."IEEE Transactions in Signal Processing, vol. 65, no. 3, pp. 794-816, 2017.
|
[10] |
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the Alternating Direction Method of Multipliers, " Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, Jan. 2011. http://imaiai.oxfordjournals.org/external-ref?access_num=10.1561/2200000016&link_type=DOI
|
[11] |
J. de Leeuw and K. Lange, "Sharp quadratic majorization in one dimension, " Computational Statistics & Data Analysis, vol. 53, no. 7, pp. 2471-2484, 2009.[Online]. Available: doi: 10.1016/j.csda.2009.01.002
|
[12] |
C. Zhang, D. Florencio, and P. Chou, "Graph signal processing-a probabilistic framework, " Tech. Rep., April 2015. [Online]. Available: https://www.microsoft.com/en-us/research/publication/graph-signal-processing-a-probabilistic-framework/
|
[13] |
X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, "Learning laplacian matrix in smooth graph signal representations, " IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6160-6173, Dec. 2016.[Online]. Available: doi: 10.1109/TSP.2016.2602809
|
[14] |
H. E. Egilmez, E. Pavez, and A. Ortega, "Graph learning from data under laplacian and structural constraints, " IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept 2017. http://ieeexplore.ieee.org/document/7979524/
|
[15] |
C. Godsil and G. Royle, The Laplacian of a Graph. Springer, 2001.
|
[16] |
K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul, "Graph Laplacian regularization for large-scale semidefinite programming, " in Advances in Neural Information Processing Systems 19. MIT Press, 2007, pp. 1489-1496.
|
[17] |
M. Razaviyayn, M. Hong, and Z. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization, " SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126-1153, 2013. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1209.2385
|
[18] |
D. Hallac, C. Wong, S. Diamond, A. Sharang, R. Sosic, S. Boyd, and J. Leskovec, "SnapVX: A network-based convex optimization solver." Journal of Machine Learning Research, vol. 18, 2017. http://europepmc.org/abstract/MED/29599649
|
[19] |
D. R. Hunter and K. Lange, "A tutorial on mm algorithms, " The American Statistician, vol. 58, no. 1, pp. 30-37, 2004.[Online]. Available: https://doi.org/10.1198/0003130042836
|
[20] |
M. W. Jacobson and J. A. Fessler, "An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms, " IEEE Transactions on Image Processing, vol. 16, no. 10, pp. 2411-2422, Oct 2007.
|
[21] |
A. L. Yuille and A. Rangarajan, "The concave-convex procedure, " Neural Computing, vol. 15, no. 4, pp. 915-936, Apr. 2003.
|
[22] |
T. T. Wu and K. Lange, "The MM alternative to EM, " Statistical Science, vol. 25, no. 4, pp. 492-505, 11 2010. doi: 10.1214/08-STS264
|
[23] |
R. Almgren and N. Chriss, "Optimal execution of portfolio transactions, " Journal of Risk, pp. 5-39, 2000. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0908.1211
|
[24] |
J. Skaf and S. Boyd, "Multi-period portfolio optimization with constraints and transaction costs, " 2009.
|
[25] |
J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covariance estimation with the graphical lasso, " Biostatistics, vol. 9, no. 3, pp. 432-441, Aug. 2008.
|
[26] |
P. Danaher, P. Wang, and D. Witten, "The joint graphical lasso for inverse covariance estimation across multiple classes, " Journal of the Royal Statistical Society, vol. 76, no. 2, pp. 373-397, 2014. doi: 10.1111/rssb.2014.76.issue-2
|
[27] |
O. Banerjee, L. El Ghaoui, and A. d'Aspremont, "Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data, " Journal of Machine Learning Research, vol. 9, pp. 485-516, 2008. http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201313010
|
[28] |
I. Soloveychik and A. Wiesel, "Joint estimation of inverse covariance matrices lying in an unknown subspace, " IEEE Transactions on Signal Processing, vol. 65, no. 9, pp. 2379-2388, 2017. doi: 10.1109/TSP.2017.2652358
|
[29] |
E. Levitan and G. T. Herman, "A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography, " IEEE Transactions on Medical Imaging, vol. 6, no. 3, pp. 185-192, Sept 1987.
|
[30] |
R. T. Rockafellar, Convex Analysis, ser. Princeton Mathematical Series. Princeton University Press, 1970.
|
[31] |
J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization, Theory and Examples. Springer, 2000.
|
[32] |
L. C. Evans, Partial differential equations. Providence, R.I.: American Mathematical Society, 2010.
|
[33] |
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
|
[34] |
J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.
|
[35] |
F. H. Clarke, Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, 1990. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201708024
|
[36] |
N. Parikh and S. Boyd, "Proximal algorithms, " Foundations and Trends in Optimization, vol. 1, no. 3, pp. 127-239, Jan. 2014.
|
[37] |
B. Bollob'as, Modern Graph Theory, ser. Graduate Texts in Mathematics. Heidelberg: Springer, 1998.
|
[38] |
P. Combettes and J. Pesquet, Proximal Splitting Methods in Signal Processing. New York, NY: Springer New York, 2011, pp. 185-212.[Online]. Available: https://doi.org/10.1007/978-1-4419-9569-8_10.
|
[39] |
M. Burger, A. Sawatzky, and G. Steidl, First Order Algorithms in Variational Image Processing. Cham: Springer International Publishing, 2016, pp. 345-407.[Online]. Available: https://doi.org/10.1007/978-3-319-41589-5_10.
|
[40] |
E. Yildirim and S. Wright, "Warm-start strategies in interiorpoint methods for linear programming, " SIAM Journal on Optimization, vol. 12, no. 3, pp. 782-810, 2002.[Online]. Available: https://doi.org/10.1137/S1052623400369235 http://dl.acm.org/citation.cfm?id=589134
|
[41] |
Y. Wang and S. Boyd, "Fast model predictive control using online optimization, " IEEE Transactions on Control Systems Technology, vol. 18, no. 3, pp. 267-278, March 2010. http://www.sciencedirect.com/science/article/pii/S1474667016400662
|
[42] |
D. Kim, D. Pal, J.-B. Thibault, and J. A. Fessler, "Accelerating ordered subsets image reconstruction for X-ray CT using spatially non-uniform optimization transfer, " IEEE Transactions on Medical Imaging, vol. 32, no. 11, pp. 1965-78, Nov. 2013. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM23751959
|
[43] |
M. J. Muckley, D. C. Noll, and J. A. Fessler, "Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA), " IEEE Transactions on Medical Imaging, vol. 34, no. 2, pp. 578-88, Feb. 2015.
|
[44] |
M. McKerns, "Pathos multiprocessing, " July 2017.[Online]. Available: https://pypi.python.org/pypi/pathos
|
[45] |
S. Boyd, M. T. Mueller, B. O'Donoghue, and Y. Wang, "Performance bounds and suboptimal policies for multi-period investment, " Foundations and Trends in Optimization, vol. 1, no. 1, pp. 1-72, Jan. 2014. http://dl.acm.org/citation.cfm?id=2693591.2693592
|
[46] |
G. Chamberlain and M. Rothschild, "Arbitrage, factor structure, and mean-variance analysis on large asset markets, " Econometrica, vol. 51, no. 5, pp. 1281-1304, 1983. [Online]. Available: http://www.jstor.org/stable/1912275 http://www.jstor.org/stable/1912275
|
[47] |
S. Diamond and S. Boyd, "CVXPY: A Python-embedded modeling language for convex optimization, " Journal of Machine Learning Research, vol. 17, no. 83, pp. 1-5, 2016. http://www.ncbi.nlm.nih.gov/pubmed/27375369
|
[48] |
B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, "OSQP: An operator splitting solver for quadratic programs, " ArXiv e-prints, Nov. 2017.
|
[49] |
D. M. Witten and R. Tibshirani, "Covariance-regularized regression and classification for high dimensional problems, " Journal of the Royal Statistical Society, vol. 71, no. 3, pp. 615-636, 2009. doi: 10.1111/rssb.2009.71.issue-3
|
[50] |
B. O' Donoghue, E. Chu, N. Parikh, and S. Boyd, "Conic optimization via operator splitting and homogeneous self-dual embedding, " Journal of Optimization Theory and Applications, vol. 169, no. 3, pp. 1042-1068, June 2016.
|