IEEE/CAA Journal of Automatica Sinica
Citation: | Lantao Xie, Lei Xie, Hongye Su and Jingdai Wang, "Polyhedral Feasible Set Computation of MPC-Based Optimal Control Problems," IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 765-770, July 2018. doi: 10.1109/JAS.2018.7511126 |
[1] |
D. Q. Mayne, "Model predictive control: recent developments and future promise, " Automatica, vol. 50, no. 12, pp. 2967-2986, Dec. 2014. http://www.sciencedirect.com/science/article/pii/S0005109814005160
|
[2] |
A. Mesbah, "Stochastic model predictive control: an overview and perspectives for future research, " IEEE Control Syst., vol. 36, no. 6, pp. 30-44, Dec. 2016. http://ieeexplore.ieee.org/document/7740982/
|
[3] |
F. Scibilia, S. Olaru, and M. Hovd, "On feasible sets for MPC and their approximations, " Automatica, vol. 47, no. 1, pp. 133-139, Jan. 2011. http://dl.acm.org/citation.cfm?id=1923254
|
[4] |
L. T. Xie, L. Xie, and H. Y. Su, "A comparative study on algorithms of robust and stochastic MPC for uncertain systems, " Acta Autom. Sinica, vol. 43, no. 6, pp. 969-992, 2017. https://www.researchgate.net/publication/318860024_A_Comparative_Study_on_Algorithms_of_Robust_and_Stochastic_MPC_for_Uncertain_Systems
|
[5] |
M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer, "Constraint-tightening and stability in stochastic model predictive control, " IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3165-3177, Jul. 2017. http://arxiv.org/abs/1511.03488
|
[6] |
S. V. Raković, B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen, "Parameterized tube model predictive control, " IEEE Trans. Autom. Control, vol. 57, no. 11, pp. 2746-2761, Nov. 2012. http://www.sciencedirect.com/science/article/pii/S0005109815005646
|
[7] |
L. T. Xie and L. Xie, Linear mismatched model based offset-free MPC for nonlinear constrained cstr systems with stochastic and deterministic disturbances. Control Engineering Practice, 2018.
|
[8] |
J. Löfberg, "Minimax approaches to robust model predictive control, " Ph. D. dissertation, Linköping University, Linköping, Sweden, 2003. https://www.researchgate.net/publication/228869742_Minmax_approaches_to_robust_model_predictive_control
|
[9] |
C. N. Jones, E. C. Kerrigan, and J. M. Maciejowski, "On polyhedral projection and parametric programming, " J. Optim. Theory Appl., vol. 138, no. 2, pp. 207-220, Aug. 2008. http://www.ams.org/mathscinet-getitem?mr=2414994
|
[10] |
S. V. Raković, B. Kouvaritakis, R. Findeisen, and M. Cannon, "Homothetic tube model predictive control, " Automatica, vol. 48, no. 8, pp. 1631-1638, Aug. 2012. http://www.sciencedirect.com/science/article/pii/S0005109812001768
|
[11] |
F. Borrelli, A. Bemporad, and M. Morari, "Geometric algorithm for multiparametric linear programming, " J. Optim. Theory Appl., vol. 118, no. 3, pp. 515-540, Sep. 2003. doi: 10.1023/B%3AJOTA.0000004869.66331.5c
|
[12] |
J. Spjotvold, P. Tondel, and T. A. Johansen, "Continuous selection and unique polyhedral representation of solutions to convex parametric quadratic programs, " J. Optim. Theory Appl., 134, no. 2, pp. 177-189, Aug. 2007. doi: 10.1007/s10957-007-9215-z
|
[13] |
J. A. Primbs and C. H. Sung, "Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise, " IEEE Trans. Autom. Control, vol. 54, no. 2, pp. 221-230, Feb. 2009. http://www.researchgate.net/publication/4265686_Stochastic_Receding_Horizon_Control_of_Constrained_Linear_Systems_with_State_and_Control_Multiplicative_Noise
|
[14] |
M. Cannon, B. Kouvaritakis, S. V. Rakovic, and Q. F. Cheng, "Stochastic tubes in model predictive control with probabilistic constraints, " IEEE Trans. Autom. Control, vol. 56, no. 1, pp. 194-200, Jan. 2011. http://ieeexplore.ieee.org/document/5599849
|
[15] |
A. Bemporad and M. Morari, "Robust model predictive control: A survey, " in Robustness in Identification and Control, A. Garulli and A. Tesi, Eds. London, UK: Springer, 1999, pp. 207-226. http://www.springerlink.com/index/n8734746605j8447.pdf
|
[16] |
G. Blekherman, P. A. Parrilo, and R. R. Thomas, Semidefinite Optimization and Convex Algebraic Geometry. Philadelphia, Pennsylvania, USA: SIAM, 2012.
|
[17] |
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
|
[18] |
A. Brondsted, An Introduction to Convex Polytopes. New York, USA: Springer-Verlag, 1983.
|
[19] |
E. Castillo, A. Cobo, F. Jubete, and R. E. Pruneda, Orthogonal Sets and Polar Methods in Linear Algebra: Applications to Matrix Calculations, Systems of Equations, Inequalities, and Linear Programming. New York, USA: John Wiley & Sons, 2011.
|
[20] |
K. Kellner, T. Theobald, and C. Trabandt, "Containment problems for polytopes and spectrahedra, " SIAM J. Optim., vol. 23, no. 2, pp. 1000-1020, May 2013. http://www.oalib.com/paper/3951878
|
[21] |
M. V. Ramana, "Polyhedra, spectrahedra, and semidefinite programming, " in Topics in Semidefinite and Interior-Point Methods, Fields Institute Communications, Providence, RI, USA, vol. 18, pp. 27-38, 1997. http://www.ams.org/mathscinet-getitem?mr=1607318
|
[22] |
A. Bhardwaj, P. Rostalski, and R. Sanyal, "Deciding polyhedrality of spectrahedra, " SIAM J. Optim., vol. 25, no. 3, pp. 1873-1884, Sep. 2015. http://arxiv.org/abs/1102.4367
|
[23] |
D. Q. Mayne, M. M. Seron, and S. V. Raković, "Robust model predictive control of constrained linear systems with bounded disturbances, " Automatica, vol. 41, no. 2, pp. 219-224, Feb. 2005. http://ogma.newcastle.edu.au/vital/access/manager/Repository/uon:361?exact=creator%3A
|
[24] |
D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, "Robust tube-based MPC for tracking of constrained linear systems with additive disturbances, " J. Process Control, vol. 20, no. 3, pp. 248-260, Mar. 2010. http://www.sciencedirect.com/science/article/pii/S0959152409002169
|
[25] |
S. N. Čhernikov, "Contraction of finite systems of linear inequalities, " Dokl. Akad. Nauk SSSR, vol. 152, pp. 1075-1078, 1963. http://www.mathnet.ru/eng/dan28687
|
[26] |
Michael Grant, Stephen Boyd, and Y. Y. Ye, "CVX users guide, " 2009.
|
[27] |
M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, "Multi-parametric toolbox 3. 0, " in 2013 European Control Conf. (ECC), Zurich, Switzerland, pp. 502-510.
|