IEEE/CAA Journal of Automatica Sinica
Citation: | Dianwei Qian and Guoliang Fan, "Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems," IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 706-717, Mar. 2018. doi: 10.1109/JAS.2018.7511078 |
[1] |
S. R. Bull, "Renewable energy today and tomorrow, " Proc. IEEE, vol. 89, no. 8, pp. 1216-1226, Aug. 2001. http://ci.nii.ac.jp/naid/20001651989
|
[2] |
S. Behera, S. Sahoo, and B. B. Pati, "A review on optimization algorithms and application to wind energy integration to grid, " Renew. Sustain. Energy Rev. , vol. 48, pp. 214-227, Aug. 2015. http://www.sciencedirect.com/science/article/pii/S1364032115002191
|
[3] |
T. Basbous, R. Younes, A. Ilinca, and J. Perron, "Optimal management of compressed air energy storage in a hybrid wind-pneumatic-diesel system for remote area power generation, " Energy, vol. 84, pp. 267-278, May 2015. http://www.sciencedirect.com/science/article/pii/S0360544215003497
|
[4] |
C. X. Wang and J. D. McCalley, "Impact of wind power on control performance standards, " Int. J. Electr. Power Energy Syst. , vol. 47, pp. 225-234, May 2013. http://www.sciencedirect.com/science/article/pii/S0142061512006424
|
[5] |
S. P. Wen, X. H. Yu, Z. G. Zeng, and J. J. Wang, "Event-triggering load frequency control for multiarea power systems with communication delays, " IEEE Trans. Industr. Electron. , vol. 63, no. 2, pp. 1308-1317, Feb. 2016. http://www.researchgate.net/publication/272398269_Event-Triggering_Load_Frequency_Control_for_Multi-Area_Power_Systems_with_Communication_Delays
|
[6] |
P. K. Ray, S. R. Mohanty, and N. Kishor, "Dynamic load-frequency control of hybrid renewable energy based power system with HVDC-link, " J. Electr. Eng. Theory Appl. , vol. 1, no. 1, pp. 24-31, Feb. 2010. http://connection.ebscohost.com/c/articles/49174079/dynamic-load-frequency-control-hybrid-renewable-energy-based-power-system-hvdc-link
|
[7] |
F. Díaz-González, M. Hau, A. Sumper, and O. Gomis-Bellmunt, "Participation of wind power plants in system frequency control: review of grid code requirements and control methods, " Renew. Sustain. Energy Rev. , vol. 34, pp. 551-564, Jun. 2014. http://www.sciencedirect.com/science/article/pii/S1364032114002019
|
[8] |
D. Rangaswami and P. Sennappan, "Load frequency control using multi-stage fuzzy logic controller for wind-micro hydro-diesel hybrid power system, " J. Vib. Control, vol. 19, no. 7, pp. 1004-1014, May 2013. https://www.researchgate.net/publication/258162424_Load_frequency_control_using_multi-stage_fuzzy_logic_controller_for_wind-micro_hydro-diesel_hybrid_power_system
|
[9] |
H. Bevrani and P. R. Daneshmand, "Fuzzy logic-based load-frequency control concerning high penetration of wind turbines, " IEEE Syst. J. , vol. 6, no. 1, pp. 173-180, Mar. 2012. http://www.researchgate.net/publication/220544753_Fuzzy_Logic-Based_Load-Frequency_Control_Concerning_High_Penetration_of_Wind_Turbines
|
[10] |
T. H. Mohamed, J. Morel, H. Bevrani, and T. Hiyama, "Model predictive based load frequency control-design concerning wind turbines, " Int. J. Electr. Power Energy Syst. , vol. 43, no. 1, pp. 859-867, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S0142061512002943
|
[11] |
T. H. Mohamed, J. Morel, H. Bevrani, A. Abd-Eltawwab Hassan, Y. Sayed Mohamed, and T. Hiyama, "Decentralized model predictive-based load-frequency control in an interconnected power system concerning wind turbines, " IEEJ Trans. Electr. Electron. Eng. , vol. 7, no. 5, pp. 487-494, Sep. 2012. http://www.researchgate.net/publication/264721267_Decentralized_model_predictive-based_load-frequency_control_in_an_interconnected_power_system_concerning_wind_turbines
|
[12] |
M. H. Kazemi, M. Karrari, and M. B. Menhaj, "Decentralized robust adaptive load frequency control using interactions estimation, " Electr. Eng. , vol. 85, no. 4, pp. 219-227, Sep. 2003. doi: 10.1007/s00202-003-0164-8
|
[13] |
L. R. Chang-Chien, N. B. Hoonchareon, C. M. Ong, and R. A. Kramer, "Estimation of $beta$ for adaptive frequency bias setting in load frequency control, " IEEE Trans. Power Syst. , vol. 18, no. 2, pp. 904-911, May 2003.
|
[14] |
V. I. Utkin, Sliding Modes in Control and Optimization. Berlin Heidelberg, Germany: Springer, 1992.
|
[15] |
D. W. Qian, X. J. Liu, and J. Q. Yi, "Robust sliding mode control for a class of underactuated systems with mismatched uncertainties, " Proc. Inst. Mech. Eng. I J. Syst. Control Eng. , vol. 223, no. 6, pp. 785-795, Sep. 2009. https://www.researchgate.net/publication/245389521_Robust_sliding_mode_control_for_a_class_of_underactuated_systems_with_mismatched_uncertainties
|
[16] |
Z. M. Al-Hamouz and Y. L. Abdel-Magid, "Variable structure load frequency controllers for multiarea power systems, " Int. J. Electr. Power Energy Syst. , vol. 15, no. 5, pp. 293-300, Oct. 1993. http://www.sciencedirect.com/science/article/pii/014206159390050W
|
[17] |
K. Vrdoljak, N. Perić, and I. Petrović, "Sliding mode based load-frequency control in power systems, " Electr. Power Syst. Res. , vol. 80, no. 5, pp. 514-527, May 2010. http://www.sciencedirect.com/science/article/pii/S0378779609002673
|
[18] |
Z. Al-Hamouz, H. Al-Duwaish, and N. Al-Musabi, "Optimal design of a sliding mode AGC controller: application to a nonlinear interconnected model, " Electr. Power Syst. Res. , vol. 81, no. 7, pp. 1403-1409, Jul. 2011. http://www.sciencedirect.com/science/article/pii/S0378779611000393
|
[19] |
R. Hooshmand, M. Ataei, and A. Zargari, "A new fuzzy sliding mode controller for load frequency control of large hydropower plant using particle swarm optimization algorithm and Kalman estimator, " Eur. Trans. Electr. Power, vol. 22, no. 6, pp. 812-830, Sep. 2012. http://www.researchgate.net/publication/263374683_A_new_fuzzy_sliding_mode_controller_for_load_frequency_control_of_large_hydropower_plant_using_particle_swarm_optimization_algorithm_and_Kalman_estimator
|
[20] |
D. W. Qian, D. B. Zhao, J. Q. Yi, and X. J. Liu, "Neural sliding-mode load frequency controller design of power systems, " Neural Comput. Appl. , vol. 22, no. 2, pp. 279-286, Feb. 2013. doi: 10.1007/s00521-011-0709-0
|
[21] |
B. Mohanty, "TLBO optimized sliding mode controller for multi-area multi-source nonlinear interconnected AGC system, " Int. J. Electr. Power Energy Syst. , vol. 73, pp. 872-881, Dec. 2015. http://www.sciencedirect.com/science/article/pii/S0142061515002690
|
[22] |
Y. Mi, Y. Fu, D. D. Li, C. S. Wang, P. C. Loh, and P. Wang, "The sliding mode load frequency control for hybrid power system based on disturbance observer, " Int. J. Electr. Power Energy Syst. , vol. 74, pp. 446 -452, Jan. 2016. http://www.sciencedirect.com/science/article/pii/S0142061515003002
|
[23] |
S. Mobayen, "Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method, " Nonlinear Dyn. , vol. 80, no. 1-2, pp. 669-683, Apr. 2015. doi: 10.1007%2Fs11071-015-1897-4
|
[24] |
S. Mobayen, "Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties, " Complexity, vol. 21, no. 2, pp. 239-244, Dec. 2015. http://www.researchgate.net/publication/265296933_Fast_terminal_sliding_mode_controller_design_for_nonlinear_second-order_systems_with_time-varying_uncertainties
|
[25] |
A. Bidadfar, H. P. Nee, L. D. Zhang, L. Harnefors, S. Namayantavana, M. Abedi, M. Karrari, and G. B. Gharehpetian, "Power system stability analysis using feedback control system modeling including HVDC transmission links, " IEEE Trans. Power Syst. , vol. 31, no. 1, pp. 116-124, Jan. 2016. http://www.researchgate.net/publication/273945413_power_system_stability_analysis_using_feedback_control_system_modeling_including_hvdc_transmission_links
|
[26] |
R. K. Sahu, S. Panda, and N. K. Yegireddy, "A novel hybrid DEPS optimized fuzzy PI/PID controller for load frequency control of multi-area interconnected power systems, " J. Process Control, vol. 24, no. 10, pp. 1596-1608, Oct. 2014. http://www.researchgate.net/publication/265388284_A_novel_hybrid_DEPS_optimized_fuzzy_PIPID_controller_for_load_frequency_control_of_multi-area_interconnected_power_systems
|
[27] |
Y. F. Lv, J. Na, Q. M. Yang, X. Wu, and Y. Guo, "Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics, " Int. J. Control, vol. 89, no. 1, pp. 99-112, Jan. 2016. doi: 10.1080/00207179.2015.1060362
|
[28] |
M. C. Pai, "Dynamic output feedback RBF neural network sliding mode control for robust tracking and model following, " Nonlinear Dyn. , vol. 79, no. 2, pp. 1023-1033, Jan. 2015. doi: 10.1007/s11071-014-1720-7
|
[29] |
S. Mobayen, "An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems, " Nonlinear Dyn. , vol. 82, no. 1-2, pp. 599-610, Oct. 2015. doi: 10.1007%2Fs11071-015-2180-4
|
[30] |
C. M. Dorling and A. S. I. Zinober, "Two approaches to hyperplane design in multivariable variable structure control systems, " Int. J. Control, vol. 44, no. 1, pp. 65-82, Jun. 1986. doi: 10.1080/00207178608933583
|
[31] |
Z. H. Man and X. H. Yu, "Terminal sliding mode control of MIMO linear systems, " IEEE Trans. Circuits Syst. I Fundam. Theory Appl. , vol. 44, no. 11, pp. 1065-1070, Nov. 1997. http://www.researchgate.net/publication/3323024_Terminal_sliding_mode_control_of_MIMO_linear_systems
|
[32] |
S. Xu, J. Ma, and Y. Li, "Dynamic nonsingular terminal sliding mode control of uncertain linear multivariable systems, " ICIC Express Lett. , vol. 5, no. 9, pp. 3033-3038, Sep. 2011. https://www.researchgate.net/publication/289896477_Dynamic_nonsingular_terminal_sliding_mode_control_of_uncertain_linear_multivariable_systems
|