A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 3
May  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Ni Bu, Wei Chen, Longguo Jin and Yandong Zhao, "Robust Control for Uncertain Nonlinear Feedback Systems Using Operator-based Right Coprime Factorization," IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 824-829, May 2019. doi: 10.1109/JAS.2017.7510895
Citation: Ni Bu, Wei Chen, Longguo Jin and Yandong Zhao, "Robust Control for Uncertain Nonlinear Feedback Systems Using Operator-based Right Coprime Factorization," IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 824-829, May 2019. doi: 10.1109/JAS.2017.7510895

Robust Control for Uncertain Nonlinear Feedback Systems Using Operator-based Right Coprime Factorization

doi: 10.1109/JAS.2017.7510895
Funds:

the National Natural Science Foundation of China 61304093

the National Natural Science Foundation of China 61472195

More Information
  • The robust control issue for uncertain nonlinear system is discussed by using the method of right coprime factorization. As it is difficult to obtain the inverse of the right factor due to the high nonlinearity, the proving of the Bezout identity becomes troublesome. Therefore, two sufficient conditions are derived to manage this problem with the nonlinear feedback system as well as that with the uncertain nonlinear feedback system under the definition of Lipschitz norm. A simulation of temperature control is given to demonstrate the validity of the proposed method.

     

  • loading
  • [1]
    T. Chai, Z. Geng, H. Yue, H. Wang, and C. Su, "A hybrid intelligent optimal control method for complex flotation process, " Int. J. Syst. Sci., vol. 40, no. 9, pp. 945-960, 2009. doi: 10.1080/00207720802645253
    [2]
    Vidyasagar, M, Control System Synthesis — A Factorization Approach, Cambridge, MA: The MIT Press, 1985.
    [3]
    Y. Zhang, X. Liu, and B. Qu, "Distributed model predictive load frequency control of multi-area power system with DFIGs, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 125-135, 2017. doi: 10.1109/JAS.2017.7510346
    [4]
    B. P. Jiang, Y. G. Kao, C. C. Gao, and X. M. Yao, "Passification of uncertain singular semi-Markovian jump systems with actuator failures via sliding mode approach, " IEEE Trans. Autom. Control, doi: 10.1109/TAC. 2017.2680540.
    [5]
    M. Akter, S. Mekhilef, N. Tan, and H. Akagi, "Modified model predictive control of a bidirectional AC-DC converter based on Lyapunov function for energy storage systems, " IEEE Trans. Industrial Electronics, vol. 63, no. 2, pp. 704-715, 2016. doi: 10.1109/TIE.2015.2478752
    [6]
    J. Ball, and A. J. van der Schaft, "J-inner-outer factorization, J-spectral factorization, and robust control for nonlinear systems, " IEEE Trans. Autom. Control, vol. 41, pp. 379-392, 1996. doi: 10.1109/9.486639
    [7]
    G. Chen and Z. Han, "Robust right coprime factorization and robust stabilization of nonlinear feedback control systems, " IEEE Trans. Autom. Control, vol. 43, pp. 1505-1510, 1998. doi: 10.1109/9.720519
    [8]
    M. Deng, A. Inoue, and K. Ishikawa, "Operator based nonlinear feedback control design using robust right coprime factorization, " IEEE Trans. Autom. Control, vol. 51, pp. 645-648, 2006. doi: 10.1109/TAC.2006.872758
    [9]
    M. Deng and N. Bu, "Isomorphism-based robust right coprime factorization of nonlinear unstable plants with perturbations, " IET Control Theory and Applications, vol. 4, no. 11, pp. 2381-2390, 2010. doi: 10.1049/iet-cta.2009.0297
    [10]
    N. Bu and M. Deng, "System design for nonlinear plants using operator-based robust right coprime factorization and isomorphism, " IEEE Trans. Autom. Control, vol. 56, pp. 952-957, 2011. doi: 10.1109/TAC.2011.2108370
    [11]
    N. Bu and M. Deng, "Isomorphism-based robust right coprime factorization realization for non-linear feedback systems, " Proc. Institution Mechanical Eng, Part Ⅰ: J. Sys. and Control Eng., vol. 225, no.6, pp. 760-769, 2011. doi: 10.1177/0959651810396270
    [12]
    M. Deng and N. Bu, "Robust control for nonlinear systems with unknown perturbations using simplified robust right coprime factorization, " Int. J. Control, vol. 85, no. 7, pp. 842-850, 2012. doi: 10.1080/00207179.2012.667882
    [13]
    M. Deng and T. Kawashima, "Adaptive nonlinear sensorless control for an uncertain miniature pneumatic curling rubber actuator using passivity and robust right roprime ractorization, " IEEE Trans. Control Syst. Technology, vol. 24, pp. 318-324, 2016. doi: 10.1109/TCST.2015.2424853
    [14]
    P. Laakkonen, "Robust regulation theory for transfer functions with a coprime factorization, " IEEE Trans. Autom. Control, vol. 61, pp. 3109-3114, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5805c91872dd02438d9d49728e54f804
    [15]
    R. J. P. de Figueiredo, and G. Chen, Nonlinear Feedback Control Systems: An Operator Theory Approach, San Diego, Academic Press, 1993.
    [16]
    N. Bu, X. Liu, and M. Deng, "Design scheme for nonlinear feedback system using right coprime factorization, " in Proc. 35th Chinese Control Conf. , pp. 637-641, 2016.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1201) PDF downloads(36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return