IEEE/CAA Journal of Automatica Sinica
Citation: | Ibrahima N'Doye, Khaled Nabil Salama and Taous-Meriem Laleg-Kirati, "Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems," IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 268-277, Jan. 2019. doi: 10.1109/JAS.2017.7510874 |
[1] |
R. Martínez-Guerra, C. A. Pérez-Pinacho, and G. C. Gómez-Cortes, Synchronization of Integral and Fractional Order Chaotic Systems: A Differential Algebraic and Differential Geometric Approach with Selected Applications in Real-Time. Switzerland: Springer, 2015.
|
[2] |
H. Nijmeijer and I. M. Y. Mareels, "An observer looks at synchronization, " IEEE Trans. Circ. Syst. I Fund. Theory Appl., vol. 44, no. 10, pp. 882-890, Oct. 1997. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=633877
|
[3] |
M. Boutayeb, M. Darouach, and H. Rafaralahy, "Generalized state-space observers for chaotic synchronization and secure communication, " IEEE Trans. Circ. Syst. I Fund. Theory Appl., vol. 49, no. 3, pp. 345-349, Mar. 2002. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=989169
|
[4] |
M. Boutayeb, "Synchronization and input recovery in digital nonlinear systems, " IEEE Trans. Circ. Syst. Ⅱ Express Briefs, vol. 51, no. 8, pp. 393-399, Aug. 2004. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1323221
|
[5] |
G. P. Jiang, W. X. Zheng, W. K. S. Tang, and G. R. Chen, "Integral-observer-based chaos synchronization, " IEEE Trans. Circ. Syst. Ⅱ Express Briefs, vol. 53, no. 2, pp. 110-114, Feb. 2006. http://ieeexplore.ieee.org/document/1593966
|
[6] |
S. Bhalekar and V. Daftardar-Gejji, "Synchronization of different fractional order chaotic systems using active control, " Commun Nonlinear Sci. Numer. Simulat., vol. 15, no. 11, pp. 3536-3546, Nov. 2010. http://connection.ebscohost.com/c/articles/70784992/antisynchronization-nonidentical-fractional-order-chaotic-systems-using-active-control
|
[7] |
Y. Tang, Z. D. Wang, and J. A. Fang, "Pinning control of fractional-order weighted complex networks, " Chaos, vol. 19, no. 1, pp. 013112, Apr. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19334976
|
[8] |
X. J. Wu, D. R. Lai, and H. T. Lu, "Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes, " Nonlinear Dyn., vol. 69, no. 1-2, pp. 667-683, Jul. 2012. doi: 10.1007/s11071-011-0295-9
|
[9] |
L. Pan, W. N. Zhou, J. A. Fang, and D. Q. Li, "Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control, " Commun Nonlinear Sci. Numer. Simulat., vol. 15, no. 12, pp. 3754-3762, Dec. 2010. doi: 10.1007/s11071-010-9728-0
|
[10] |
L. Chen, Y. Chai, and R. Wu, "Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems, " Chaos, vol. 21, no. 4, pp. 043107, Dec. 2011.
|
[11] |
|
[12] |
T. L. Liao and N. S. Huang, "An observer-based approach for chaotic synchronization with applications to secure communications, " IEEE Trans. Circ. Syst. I Fund. Theory Appl., vol. 46, no. 9, pp. 1144-1150, Sep. 1999. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=788817
|
[13] |
H. H. Niemann, S. Stoustrup, B. Shafai, and S. Beale, "LTR design of proportional-integral observers, " Int. J. Robust Nonlinear Control, vol. 5, no. 7, pp. 671-693, Nov. 1995. doi: 10.1002/rnc.4590050706/full
|
[14] |
J. C. Trigeassou, N. Maamri, J. Sabatier, and A. Oustaloup, "A Lyapunov approach to the stability of fractional differential equations, " Signal Process., vol. 91, no. 3, pp. 437-445, Mar. 2011. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Signal%20Processing&volume=91&issue=3&spage=437
|
[15] |
M. R. Rapaić and A. Pisano, "Variable-order fractional operators for adaptive order and parameter estimation, " IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 798-803, Mar. 2014. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=IEEE%20Transactions%20on%20Automatic%20Control&volume=59&issue=3&spage=798
|
[16] |
E. A. Boroujeni and H. R. Momeni, "Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems, " Signal Process., vol. 92, no. 10, pp. 2365-2370, Oct. 2012. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Signal%20Processing&volume=92&issue=10&spage=2365
|
[17] |
Y. H. Lan and Y. Zhou, "Non-fragile observer-based robust control for a class of fractional-order nonlinear systems, " Syst. Control Lett., vol. 62, no. 12, pp. 1143-1150, Dec. 2013. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Systems%20and%20Control%20Letters&volume=62&issue=12&spage=1143
|
[18] |
I. N
|
[19] |
I. Podlubny, Fractional Differential Equations. New York, USA: Academic Press, 1999.
|
[20] |
S. Das, Functional Fractional Calculus for System Identification and Controls. Berlin Heidelberg, Germany: Springer, 2008.
|
[21] |
G. Montseny, "Diffusive representation of pseudo-differential time-operators, " in ESAIM : Fractional Differential Systems: Models, Methods and Applications, vol. 5, pp. 1318-1326, 1998. http://www.ams.org/mathscinet-getitem?mr=1665569
|
[22] |
J. Sabatier, C. Farges, and J. C. Trigeassou, "Fractional systems state space description: Some wrong ideas and proposed solutions, " J. Vibrat. Control, vol. 20, no. 7, pp. 1076-1084, Jul. 2014.
|
[23] |
D. Heleschewitz and D. Matignon, "Diffusive realizations of fractional integro-differential operators: structure analysis under approximation, " in IFAC Conf. System, Structure and Control, vol. 2, pp. 243-248, 1998.
|
[24] |
J. C. Trigeassou and N. Maamri, "Initial conditions and initialization of linear fractional differential equations, " Signal Process., vol. 91, no. 3, pp. 427-436, Mar. 2011. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Signal%20Processing&volume=91&issue=3&spage=427
|
[25] |
D. Matignon and B. dÁndréa-Novel, "Observer-based controllers for fractional differential systems, " in Proc. 36th Conf. Decision and Control, San Diego, USA, vol. 5, pp. 4967-4972, 1997.
|
[26] |
M. Darouach, M. Zasadzinski, and S. J. Xu, "Full-order observers for linear systems with unknown inputs, " IEEE Trans. Autom. Control, vol. 39, no. 3, pp. 606-609, Mar. 1994. http://ieeexplore.ieee.org/iel4/9/6964/00280770.pdf
|
[27] |
P. P. Khargonekar, I. R. Petersen, and K. Zhou, "Robust stabilization of uncertain linear systems: Quadratic stabilizability and ${H}_{infty}$ control theory, " IEEE Trans. Autom. Control, vol. 35, no. 3, pp. 356-361, Mar. 1990.
|
[28] |
S. Boyd, L. El Ghaoui, E. Féron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, USA: SIAM, 1994. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=735454
|
[29] |
M. Abbaszadeh and H. J. Marquez, "Robust ${H}_{infty}$ observer design for a class of nonlinear uncertain systems via convex optimization, " in Proc. IEEE American Control Conf., New York, USA, 2007, pp. 1699-1704.
|
[30] |
M. Abbaszadeh and H. J. Marquez, "LMI optimization approach to robust ${H}_{infty}$ observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems, " Int. J. Robust Nonlinear Control, vol. 19, no. 3, pp. 313-340, Feb. 2009.
|
[31] |
M. Abbaszadeh and H. J. Marquez, "Dynamical robust ${H}_{infty}$ filtering for nonlinear uncertain systems: An LMI approach, " J. Franklin Inst., vol. 347, no. 7, pp. 1227-1241, Sep. 2010.
|
[32] |
M. Abbaszadeh and H. J. Marquez, "A generalized framework for robust nonlinear ${H}_{infty}$ filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties, " Automatica, vol. 48, no. 5, pp. 894-900, May 2012.
|
[33] |
I. Grigorenko and E. Grigorenko, "Chaotic dynamics of the fractional Lorenz system, " Phys. Rev. Lett., vol. 91, no. 3, pp. 034101, Jul. 2003. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM12906418
|