A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 1
Jan.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Santanu Kumar Pradhan and Bidyadhar Subudhi, "Position Control of a Flexible Manipulator Using a New Nonlinear Self-Tuning PID Controller," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 136-149, Jan. 2020. doi: 10.1109/JAS.2017.7510871
Citation: Santanu Kumar Pradhan and Bidyadhar Subudhi, "Position Control of a Flexible Manipulator Using a New Nonlinear Self-Tuning PID Controller," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 136-149, Jan. 2020. doi: 10.1109/JAS.2017.7510871

Position Control of a Flexible Manipulator Using a New Nonlinear Self-Tuning PID Controller

doi: 10.1109/JAS.2017.7510871
More Information
  • In this paper, a new nonlinear self-tuning PID controller (NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator (FLM) while it is subjected to carry different payloads. Since, payload is a critical parameter of the FLM whose variation greatly influences the controller performance. The proposed controller guarantees stability under change in payload by attenuating the non-modeled higher order dynamics using a new nonlinear autoregressive moving average with exogenous-input (NARMAX) model of the FLM. The parameters of the FLM are identified on-line using recursive least square (RLS) algorithm and using minimum variance control (MVC) laws the control parameters are updated in real-time. This proposed NSPID controller has been implemented in real-time on an experimental set-up. The joint tracking and link deflection performances of the proposed adaptive controller are compared with that of a popular direct adaptive controller (DAC). From the obtained results, it is confirmed that the proposed controller exhibits improved performance over the DAC both in terms of accurate position tracking and quick damping of link deflections when subjected to variable payloads.

     

  • loading
  • Recommended by Associate Editor Zengguang Hou.
  • [1]
    M. O. Tokhi and A. K. M. Azad, Flexible Robot Manipulators: Modeling, Simulation and Control. London, U.K.: IET, 2008.
    [2]
    A. de Luca and B. Siciliano, "Closed-form dynamic model of planar multilink lightweight robots, " IEEE Trans. Syst. Man and Cybernetics, vol. 21, no. 4, pp. 826-839, 1991. doi: 10.1109/21.108300
    [3]
    M. Moallem, K. Khorasani, and R. V. Patel, "An integral manifold approach for link position tracking of flexible multi-link manipulators, " IEEE Trans. Robot. Automat. vol. 13, pp. 823-837, Dec., 1997. https://www.researchgate.net/publication/316778419_The_study_of_numerical_simulation_of_tsunami_propagation_in_steep_stream_river
    [4]
    H. Geniele, R. V. Patel, and K. Khorasani, "End-point control of a flexible-link manipulator: an experimental study, " IEEE Trans. Contr. Syst. Technol., vol. 5, pp. 556-570, Nov., 1997. https://ieeexplore.ieee.org/document/641401
    [5]
    S. K. Dwivedy and P. Eberhard, "Dynamic analysis of flexible manipulators literature review, " Mech. Mach. Theory, vol. 41, no. 7, pp. 749-777, Jul. 2006. https://www.sciencedirect.com/science/article/abs/pii/S0094114X06000292
    [6]
    D. M. Rovner and R. H. Cannon, "Experiments toward on-line identification and control of a very flexible one-link manipulator." Int. J. Robotics Research, vol. 6, no. 4, pp. 3-19, 1987. doi: 10.1177/027836498700600401
    [7]
    J. M. Skowronski, "Algorithm for adaptive control of two-arm flexible manipulators under uncertainty, " IEEE Trans. Aerospace and Electronic Systems, vol. 24, no. 5, pp. 562-570, 1988. doi: 10.1109/7.9684
    [8]
    A. J. Koivo and K. S. Lee, "Self-tuning control of planar two-link manipulator with non-rigid arm, " in Proc. IEEE Int. Conf. Robotics and Automation, pp. 1030-1035, 1989. https://www.researchgate.net/publication/224722537_Self-tuning_control_of_planar_two-link_manipulator_with_non-rigid_arm
    [9]
    S. Yurkovich and A. P. Tzes, "Experiments in identification and control of flexible-link manipulators, " IEEE Control System Magazine, vol. 10, no. 2, pp. 41-46, 1990. doi: 10.1109/37.45793
    [10]
    V. Feliu, K. S. Rattan, and B. H. Brown, "Adaptive control of a single-link flexible manipulator, " IEEE Control System Magazine, vol. 10, no. 2, pp. 29-33, 1990. doi: 10.1109/37.45791
    [11]
    T. -C. Yang, J. C. S.Yang, and P. Kudva, "Adaptive control of a single-link flexible manipulator with unknown load, " in Proc. IEEE D. Control Theory & App., vol. 138, no. 2, pp. 153-159, 1991. https://www.researchgate.net/publication/3360817_Adaptive_control_of_a_single-link_flexible_manipulator_with_unknownload
    [12]
    E. G. Christoforou and C. J. Damaren, "The control of flexible-link robots manipulating large payloads: theory and experiments." J. Robotic Systems, vol. 17, no. 5, pp. 255-271, 2000. doi: 10.1002/(SICI)1097-4563(200005)17:5<255::AID-ROB3>3.0.CO;2-K
    [13]
    M. R. Rokui and K. Khorsani, "Experimental results on discrete time nonlinear adaptive tracking control of a flexible-link manipulator, " IEEE Trans. Syst. Man and Cybernetics, vol. 30, no. 1, pp. 151-164, 2000. doi: 10.1109/3477.826955
    [14]
    R. Ramos, R. and V. Feliu, "New online payload identification for flexible robots. Application to adaptive control." J. Sound and Vibration, vol. 315, no. 1-2, pp. 34-57, 2008. doi: 10.1016/j.jsv.2008.02.003
    [15]
    J. Becedas, J. R. Trapero, V. Feliu, and H. Sira-Ramrez, "Adaptive controller for single-link flexible manipulators based on algebraic identification and generalized proportional integral control." IEEE Trans. Systems, Man and Cybernetics, vol. 39, no. 3, pp. 735-751, 2009. doi: 10.1109/TSMCB.2008.2008905
    [16]
    J. T. Agee, Z. Bingul, and S. Kizir, "Tip trajectory control of a flexible-link manipulator using an intelligent proportional integral (iPI) controller, " Trans. Inst. Meas. Control, vol. 36, no. 5, 2014.
    [17]
    M. Agarwal and D. E. Seborg, "Self-tuning controllers for nonlinear systems, " Automatica, vol. 23, no. 1, pp. 2009-2014, 1987. https://www.sciencedirect.com/science/article/pii/0005109887900938
    [18]
    T. Yamamoto and S. L. Shah, "Design and experimental evaluation of a multivariable self-tuning PID controller, " IEE Proceedings-Control Theory and Applications, vol. 151, no. 5, pp. 645-652, 2004. doi: 10.1049/ip-cta:20040853
    [19]
    S. Chen and S. A. Billings, "Representations of nonlinear systems: the NARMAX model, " Int. J. Control, vol. 49, no. 3, pp. 1013-1032, 1989. doi: 10.1080/00207178908559683
    [20]
    S. L. Kukreja, H. L. Galiana, and R. E. Kearney, "NARMAX representation and identification of ankle dynamics, " IEEE Trans. Biomedical Engineering, vol. 50, no. 1, pp. 70-81, 2003. doi: 10.1109/TBME.2002.803507
    [21]
    J. S. H. Tsai, C. T. Yang, C. C. Kuang, S. M. Guo, L. S. Shieh, and C. W. Chen, "NARMAX model-based state-space self-tuning control for nonlinear stochastic hybrid systems., " J. Applied Mathematical Modelling, vol. 31, no. 1, pp. 3030-3054, 2010. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f37aa88b3a6d3f00b65cd86e5dcb123d
    [22]
    B. Subudhi and D. Jena, "A differential evolution based neural network approach to nonlinear system identification, " Applied Soft Computing, vol. 1, no. 1, pp. 861-871, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efe2648739a43506c6f66bb047a27725
    [23]
    H. E. Shahabpoor, A. Pavic, J. M. W. Brownjohn, S. A. Billings, L. Z. Guo and M. Bocian, "Real-Life measurement of Tri-Axial walking ground reaction forces using optimal network of wearable inertial measurement Units, " IEEE Trans. Neural Sys. and Rehabilitation Engineering, vol. 261, no. 8, pp. 3030-3054, 2018. https://www.researchgate.net/publication/324931882_Real-Life_Measurement_of_Tri-Axial_Walking_Ground_Reaction_Forces_Using_Optimal_Network_of_Wearable_Inertial_Measurement_Units
    [24]
    C. T. Wang, J. S. H. Tsai, C. W. Chen, Y. Lin, S. M. Guo, and L. S. Shieh "An active fault-tolerant PWM tracker for unknown nonlinear stochastic hybrid systems: NARMAX model and OKID based state-space self-tuning control, " J. Control Science and Engineering, vol. 1, pp. 1-27, 2010. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f37aa88b3a6d3f00b65cd86e5dcb123d
    [25]
    J. J. E. Slotine and L. Weiping, "Adaptive manipulator control: a case study, " IEEE Trans. Auto. Control, vol. 33, no. 11, pp. 995-1003, 1988. doi: 10.1109/9.14411
    [26]
    S. K. Pradhan and B. Subudhi, "Nonlinear model predictive control of a two-link flexible manipulator: an experimental study, " IEEE Trans. Control System Tech., vol. 22, no. 5, pp. 1754-1768, 2014. doi: 10.1109/TCST.2013.2294545
    [27]
    S. K. Pradhan and B. Subudhi, "Real-time adaptive control of a flexible manipulator using reinforcement learning, " IEEE Trans. Automation Science and Engg., vol. 9, no. 2, pp. 237-249, 2012. doi: 10.1109/TASE.2012.2189004

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(2)

    Article Metrics

    Article views (1395) PDF downloads(146) Cited by()

    Highlights

    • Designed nonlinear self-tuning controller to control flexible-link manipulator.
    • Controller guarantees stability under change in payload.
    • Developed Nonlinear autoregressive moving average with exogenous-input model for manipulator.
    • Identified Parameters of manipulator on-line using RLS estimation.
    • Implemented the controller in real-time on an experimental set-up.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return