IEEE/CAA Journal of Automatica Sinica
Citation: | PeiYun Zhang, Sheng Shu and MengChu Zhou, "An Online Fault Detection Model and Strategies Based on SVM-Grid in Clouds," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 445-456, Feb. 2018. doi: 10.1109/JAS.2017.7510817 |
[1] |
M. M. Hassan, M. Abdullah Al-Wadud, and G. Fortino, "A socially optimal resource and revenue sharing mechanism in cloud federations, " in Proc. 19th IEEE Int. Conf. Computer Supported Cooperative Work in Design, Calabria, Italy, 2015, pp. 620-625. https://www.mendeley.com/research-papers/socially-optimal-resource-revenue-sharing-mechanism-cloud-federations/
|
[2] |
G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, "Integration of agent-based and cloud computing for the smart objects-oriented IoT, " in Proc. 18th IEEE Int. Conf. Computer Supported Cooperative Work in Design, Hsinchu, Taiwan, China, 2014, pp. 493-498. https://www.mendeley.com/research-papers/integration-agentbased-cloud-computing-smart-objectsoriented-iot/
|
[3] |
H. T. Yuan, J. Bi, W. Tan, M. C. Zhou, B. H. Li, and J. Q. Li, "TTSA: An effective scheduling approach for delay bounded tasks in hybrid clouds, " IEEE Trans. Cybern., vol. 47, no. 11, pp. 3658-3668, Nov. 2017. https://www.mendeley.com/research-papers/ttsa-effective-scheduling-approach-delay-bounded-tasks-hybrid-clouds/
|
[4] |
H. T. Yuan, J. Bi, W. Tan, and B. H. Li, "CAWSAC: Cost-aware workload scheduling and admission control for distributed cloud data centers, " IEEE Trans. Automat. Sci. Eng., vol. 13, no. 2, pp. 976-985, Apr. 2016. https://www.mendeley.com/research-papers/cawsac-costaware-workload-scheduling-admission-control-distributed-cloud-data-centers-1/
|
[5] |
P. Y. Zhang and M. C. Zhou, "Dynamic cloud task scheduling based on a two-stage strategy, " IEEE Trans. Automat. Sci. Eng., 2017. doi: 10.1109/TASE.2017.2693688.
|
[6] |
J. Bi, H. T. Yuan, W. Tan, M. C. Zhou, Y. S. Fan, J. Zhang, and J. Q. Li, "Application-aware dynamic fine-grained resource provisioning in a virtualized cloud data center, " IEEE Trans. Automat. Sci. Eng., vol. 14, no. 2, pp. 1172-1183, Apr. 2017. https://www.mendeley.com/research-papers/applicationaware-dynamic-finegrained-resource-provisioning-virtualized-cloud-data-center/
|
[7] |
Y. N. Xia, M. C. Zhou, X. Luo, Q. S. Zhu, J. Li, and Y. Huang, "Stochastic modeling and quality evaluation of infrastructure-as-a-service clouds, " IEEE Trans. Automat. Sci. Eng, vol. 12, no. 1, pp. 162-170, Jan. 2015. https://www.mendeley.com/research-papers/stochastic-modeling-quality-evaluation-infrastructureasaservice-clouds-1/
|
[8] |
W. B. Zheng, M. C. Zhou, L. Wu, Y. N. Xia, X. Luo, S. C. Pang, Q. S. Zhu, and Y. Q. Wu, "Percentile performance estimation of unreliable IaaS clouds and their cost-optimal capacity decision, " IEEE Access, vol. 5, pp. 2808-2818, Feb. 2017. https://www.mendeley.com/research-papers/percentile-performance-estimation-unreliable-iaas-clouds-costoptimal-capacity-decision/
|
[9] |
M. H. Ghahramani, M. C. Zhou, and C. T. Hon, "Toward cloud computing QoS architecture: Analysis of cloud systems and cloud services, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 6-18, Jan. 2017. https://www.mendeley.com/research-papers/toward-cloud-computing-qos-architecture-analysis-cloud-systems-cloud-services-1/
|
[10] |
K. Trivedi, G. Ciardo, B. Dasarathy, M. Grottke, A. Rindos, and B. Varshaw, "Achieving and assuring high availability, " in Proc. IEEE Int. Symp. Parallel and Distributed Processing, Miami, FL, USA, 2008, pp. 1-7. https://www.mendeley.com/research-papers/achieving-assuring-high-availability-1/
|
[11] |
G. F. Jiang, H. F. Chen, and K. Yoshihira, "Modeling and tracking of transaction flow dynamics for fault detection in complex systems, " IEEE Trans. Dependable Secure Comput., vol. 3, no. 4, pp. 312-326, Oct. -Dec. 2006. https://www.mendeley.com/research-papers/modeling-tracking-transaction-flow-dynamics-fault-detection-complex-systems/
|
[12] |
M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward, "Efficient fault detection and diagnosis in complex software systems with information-theoretic monitoring, " IEEE Trans. Dependable Secure Comput., vol. 8, no. 4, pp. 510-522, Jul. -Aug. 2011. https://www.mendeley.com/research-papers/efficient-fault-detection-diagnosis-complex-software-systems-informationtheoretic-monitoring/
|
[13] |
X. Xu and H. H. Huang, "On soft error reliability of virtualization infrastructure, " IEEE Trans. Comput., vol. 65, no. 12, pp. 3727-3739, Dec. 2016. https://www.mendeley.com/research-papers/soft-error-reliability-virtualization-infrastructure/
|
[14] |
M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and E. Brewer, "Path-based faliure and evolution management, " in Proc. 1st Symp. on Networked Systems Design and Implementation, San Francisco, California, USA, 2004, pp. 309-322. https://www.mendeley.com/research-papers/pathbased-faliure-evolution-management/
|
[15] |
D. Oppenheimer, A. Ganapathi, and D. A. Patterson, "Why do internet services fail, and what can be done about it?, " in Proc. 4th Conf. USENIX Symp. Internet Technologies and Systems, Seattle, Washington, USA, 2003, pp. 165-171. https://www.mendeley.com/research-papers/internet-services-fail-done-about-it/
|
[16] |
T. Wang, W. B. Zhang, C. Y. Ye, J. Wei, H. Zhong, and T. Huang, "FD4C: Automatic fault diagnosis framework for web applications in cloud computing, " IEEE Trans. Syst. Man Cybern. Syst., vol. 46, no. 1, pp. 61-75, Jan. 2016. https://www.mendeley.com/research-papers/fd4c-automatic-fault-diagnosis-framework-web-applications-cloud-computing-1/
|
[17] |
A. Arefin, V. K. Singh, G. F. Jiang, Y. P. Zhang, and C. Lumezanu, "Diagnosing data center behavior flow by flow, " in Proc. 33rd Int. Conf. Distributed Computing Systems, Philadelphia, PA, USA, 2013, pp. 11-20. https://www.mendeley.com/research-papers/diagnosing-data-center-behavior-flow-flow/
|
[18] |
H. F. Chen, G. F. Jiang, K. Yoshihira, and A. Saxena, "Invariants based failure diagnosis in distributed computing systems, " in Proc. 29th Symp. Reliable Distributed Systems, New Delhi, India, 2010, pp. 160-166. https://www.mendeley.com/research-papers/invariants-based-failure-diagnosis-distributed-computing-systems/
|
[19] |
E. Kiciman and A. Fox, "Detecting application-level failures in component-based Internet services, " IEEE Trans. Neural Netw., vol. 16, no. 5, pp. 1027-1041, Sep. 2005. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16252814
|
[20] |
R. H. Lin, B. D. Wu, F. C. Yang, Y. Zhao, and J. X. Zhou, "An efficient adaptive failure detection mechanism for cloud platform based on volterra series, " China Commun., vol. 11, no. 4, pp. 1-12, Apr. 2014. https://www.mendeley.com/research-papers/efficient-adaptive-failure-detection-mechanism-cloud-platform-based-volterra-series-2/
|
[21] |
Q. Liu, F. Zhang, M. Liu, and W. M. Shen, "A fault prediction method based on modified Genetic Algorithm using BP neural network algorithm, " in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016, pp. 4614-4619.
|
[22] |
C. L. Li, X. S. Zong, and Gudake, "A survey of online fault diagnosis for PV module based on BP neural network, " in Proc. Int. Conf. Smart City and Systems Engineering (ICSCSE), Zhangjiajie, Hunan, China, 2016, pp. 483-486.
|
[23] |
S. Yan, Y. J. Liu, and F. J. Guan, "The application of BP neural network algorithm in optical fiber fault diagnosis, " in Proc. 14th Int. Symp. Distributed Computing and Applications for Business Engineering and Science, Guiyang, China, 2015, pp. 509-512.
|
[24] |
Y. Tamura, Y. Nobukawa, and S. Yamada, "A method of reliability assessment based on neural network and fault data clustering for cloud with big data, " in Proc. 2nd Int. Conf. Information Science and Security, Seoul, South Korea, 2015, pp. 1-4.
|
[25] |
Z. J. Huang, Z. S. Wang, and H. G. Zhang, "Multilevel feature moving average ratio method for fault diagnosis of the microgrid inverter switch, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 177-185, Apr. 2017. https://www.mendeley.com/research-papers/multilevel-feature-moving-average-ratio-method-fault-diagnosis-microgrid-inverter-switch/
|
[26] |
X. W. Feng, X. Y. Kong, and H. G. Ma, "Coupled cross-correlation neural network algorithm for principal singular triplet extraction of a cross-covariance matrix, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 149-156, Apr. 2016. https://www.mendeley.com/research-papers/coupled-crosscorrelation-neural-network-algorithm-principal-singular-triplet-extraction-crosscovaria/
|
[27] |
H. Malik and S. Mishra, "Application of Probabilistic Neural Network in fault diagnosis of wind turbine using FAST, TurbSim and simulink, " Procedia Comput. Sci., vol. 58, pp. 186-193, Dec. 2015. doi: 10.1016/j.procs.2015.08.052.
|
[28] |
P. H. Li, S. X. Zhang, D. C. Luo, and H. P. Luo, "Fault diagnosis of analog circuit using spectrogram and LVQ neural network, " in Proc. 27th Chinese Control and Decision Conf., Qingdao, China, 2015, pp. 2673-2678. https://www.mendeley.com/research-papers/fault-diagnosis-analog-circuit-using-spectrogram-lvq-neural-network/
|
[29] |
J. Y. Liu, Y. C. Liang, and X. Y. Sun, "Application of Learning Vector Quantization network in fault diagnosis of power transformer, " in Proc. Int. Conf. Mechatronics and Automation, Changchun, China, 2009, pp. 4435-4439. https://www.mendeley.com/research-papers/application-learning-vector-quantization-network-fault-diagnosis-power-transformer/
|
[30] |
A. M. Bassiuny, X. L. Li, and R. Du, "Fault diagnosis of stamping process based on empirical mode decomposition and learning vector quantization, " Int. J. Mach. Tools Manuf., vol. 47, no. 15, pp. 2298-2306, Dec. 2007. https://www.mendeley.com/research-papers/fault-diagnosis-stamping-process-based-empirical-mode-decomposition-learning-vector-quantization-2/
|
[31] |
C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learn., vol. 20, no. 3, pp: 273-297, Sep. 1995. doi: 10.1007%2FBF00994018
|
[32] |
Z. Zhen, F. Wang, Y. J. Sun, Z. Q. Mi, C. Liu, B. Wang, and J. Lu, "SVM based cloud classification model using total sky images for PV power forecasting, " in Proc. IEEE Power & Energy Society Innovative Smart Grid Technologies Conf., Washington, DC, USA, 2015, pp. 1-5. https://www.mendeley.com/research-papers/svm-based-cloud-classification-model-using-total-sky-images-pv-power-forecasting-4/
|
[33] |
M. A. Munawar and P. A. S. Ward, "A comparative study of pairwise regression techniques for problem determination, " in Proc. Conf. Centre for Advanced Studies on Collaborative Research, Richmond Hill, Ontario, Canada, 2007, pp. 152-166.
|
[34] |
J. S. Lee and K. B. Lee, "An open-switch fault detection method and tolerance controls based on SVM in a grid-connected T-type rectifier with unity power factor, " IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 7092-7104, Dec. 2014. https://www.mendeley.com/research-papers/openswitch-fault-detection-method-tolerance-controls-based-svm-gridconnected-ttype-rectifier-unity-p/
|
[35] |
N. Tutkun, "Minimization of operational cost for an off-grid renewable hybrid system to generate electricity in residential buildings through the SVM and the BCGA methods, " Energy Build., vol. 76, pp. 470-475, Jun. 2014.
|
[36] |
A. Meligy and M. Al-Khatib, "A grid-based distributed SVM data mining algorithm, " Eur. J. Sci. Res., vol. 27, no. 3, pp. 313-321, Jan. 2009. https://www.mendeley.com/research-papers/grid-based-system-data-mining-using-mapreduce-4/
|
[37] |
Y. Rahulamathavan, R. C. W. Phan, S. Veluru, K. Cumanan, and M. Rajarajan, "Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud, " IEEE Trans. Dependable Secure Comput., vol. 11, no. 5, pp. 467-479, Sep. -Oct. 2014. https://www.mendeley.com/research-papers/privacypreserving-multiclass-support-vector-machine-outsourcing-data-classification-cloud/
|
[38] |
W. Y. Zhang, H. G. Zhang, J. H. Liu, K. Li, D. S. Yang, and H. Tian, "Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 520-525, Jul. 2017. https://www.mendeley.com/research-papers/weather-prediction-multiclass-support-vector-machines-fault-detection-photovoltaic-system-2/
|
[39] |
C. W. Hsu, C. C. Chang, and C. J. Lin, "A practical guide to support vector classification, " Technical Report, Department of Computer Science and Information Engineering, University of Taiwan, China, pp. 1-12, 2003. https://www.mendeley.com/research-papers/practical-guide-support-vector-classification/
|
[40] |
Z. L. Lan, Z. M. Zheng, and Y. W. Li, "Toward automated anomaly identification in large-scale systems, " IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 2, pp. 174-187, Feb. 2010. https://www.mendeley.com/research-papers/toward-automated-anomaly-identification-largescale-systems/
|
[41] |
R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis. Phi Learning Private Limited, 2012. https://www.mendeley.com/research-papers/applied-multivariate-statistical-analysis-224/
|
[42] |
G. B. Huang, H. M. Zhou, X. J. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification, " IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012. https://www.mendeley.com/research-papers/extreme-learning-machine-regression-multiclass-classification-24/
|
[43] |
A. Bryman and D. Cramer, Quantitative Data Analysis with IBM SPSS 17, 18 & 19:A Guide for Social Scientists. New York:Routledge, 2011.
|
[44] |
J. Platt, "A fast algorithm for training support vector machines, " J. of Infor. Techn., vol. 2, no. 5, pp. 1-28, Feb. 1998.
|
[45] |
G. Fortino, R. Gravina, W. Russo and C. Savaglio, "Modeling and Simulating Internet-of-Things Systems:A Hybrid Agent-Oriented Approach, " Computing in Science & Engineering, vol. 19, no. 5, pp. 68-76, 2017. https://arxiv.org/pdf/1707.00832.pdf
|
[46] |
N. Q. Wu, Z. W. Li, K. Barkaoui, X. O. Li, T. Murata, and M. C. Zhou, "IoT-based smart and complex systems: A guest editorial report, " IEEE/CAA J. of Autom. Sinica, vol. 5, no. 1, pp. 69-73, Jan. 2018.
|
[47] |
M. Zhou, G. Fortino, W. Shen, J. Mitsugi, J. Jobin, and R. Bhattacharyya, "Guest Editorial: Special Section on Advances and Applications of Internet of Things for Smart Automated Systems, " IEEE Trans. on Automa. Sci. and Engin., vol. 13, no. 3, pp. 1225-1229, July 2016. https://www.mendeley.com/research-papers/guest-editorial-special-section-advances-applications-internet-things-smart-automated-systems/
|
[48] |
J. J. Cheng, J. L. Cheng, M. C. Zhou, Q. Zhang, C. Yan, Y. Yang, and C. Liu, "Routing in Internet of Vehicles: A Review, " IEEE Trans. on Intell. Transport. Sys., vol. 16, no. 5, pp. 2339-2352, Oct. 2015. https://www.mendeley.com/research-papers/routing-internet-vehicles-review/
|
[49] |
J. Yan, M. Zhou and Z. Ding, "Recent Advances in Energy-Efficient Routing Protocols for Wireless Sensor Networks: A Review, " IEEE Access, vol. 4, pp. 5673-5686, Oct. 2016. https://www.mendeley.com/research-papers/recent-advances-energyefficient-routing-protocols-wireless-sensor-networks-review-2/
|