IEEE/CAA Journal of Automatica Sinica
Citation: | Tzu-Chi Lin, Siyuan Ji, Charles E. Dickerson and David Battersby, "Coordinated Control Architecture for Motion Management in ADAS Systems," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 432-444, Feb. 2018. doi: 10.1109/JAS.2017.7510814 |
[1] |
J. Q. Wang, L. Zhang, D. Z. Zhang, and K. Q. Li, "An adaptive longitudinal driving assistance system based on driver characteristics, " IEEE Trans. Intell. Transp. Syst., vol. 14, no. 1, pp. 1-12, Mar. 2013. https://www.mendeley.com/research-papers/adaptive-longitudinal-driving-assistance-system-based-driver-characteristics/
|
[2] |
H. Kim, D. Kim, I. Shu, and K. Yi, "Time-varying parameter adaptive vehicle speed control, " IEEE Trans. Veh. Technol., vol. 65, no. 2, pp. 581-588, Feb. 2015. https://www.mendeley.com/research-papers/timevarying-parameter-adaptive-vehicle-speed-control/
|
[3] |
A. K. G. Balagh, F. Naderkhani, and V. Makis, "Highway accident modeling and forecasting in winter, " Transp. Res. A Policy Pract., vol. 59, pp. 384-396, Jan. 2014. https://www.mendeley.com/research-papers/highway-accident-modeling-forecasting-winter/
|
[4] |
C. Z. Guo, J. Meguro, Y. Kojima, and T. Naito, "A multimodal ADAS system for unmarked urban scenarios based on road context understanding, "IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 1690-1704, Aug. 2015. https://www.mendeley.com/research-papers/multimodal-adas-system-unmarked-urban-scenarios-based-road-context-understanding/
|
[5] |
Advanced driver assistance systems. [Online]. Available: http://en.wikipedia.org/wiki/Advanced_driver_assistance_systems
|
[6] |
V. A. Butakov and P. Ioannou, "Personalized driver/vehicle lane change models for ADAS, "IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4422-4431, Oct. 2015.
|
[7] |
D. O. Cualain, M. Glavin, and E. Jones, "Multiple-camera lane departure warning system for the automotive environment, " IET Intell. Transp. Syst., vol. 6, no. 3, pp. 223-234, Sep. 2012. https://www.mendeley.com/research-papers/multiplecamera-lane-departure-warning-system-automotive-environment/
|
[8] |
P. Angkititrakul, R. Terashima, and T. Wakita, "On the use of stochastic driver behavior model in lane departure warning, "IEEE Trans. Intell. Transp. Syst., vol. 12, no. 1, pp. 174-183, Mar. 2011. https://www.mendeley.com/research-papers/stochastic-driver-behavior-model-lane-departure-warning/
|
[9] |
M. R. Spena, F. Timpone, and F. Farroni, "Virtual testing of advanced driving assistance systems, " Int. J. Mechan., vol. 9, pp. 300-308, Dec. 2015.
|
[10] |
C. Visvikis, T. L. Smith, M. Pitcher, and R. Smith, "Study on lane departure waring and lane change assistance systems, " Transport Research Laboratory, Project Report PPR 374, Nov. 2008. https://www.mendeley.com/research-papers/study-lane-departure-warning-lane-change-assistant-systems/
|
[11] |
M. Doumiati, O. Sename, L. Dugard, J. J. Martinez-Molina, P. Gaspar, and Z. Szabo, "Integrated vehicle dynamics control via coordination of active front steering and rear braking, " Eur. J. Control, vol. 19, no. 2, pp. 121-143, Mar. 2013. https://www.mendeley.com/research-papers/integrated-vehicle-dynamics-control-via-coordination-active-front-steering-rear-braking-3/
|
[12] |
X. J. Yang, Z. C. Wang, and W. L. Peng, "Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory, " Veh. Syst. Dyn., vol. 47, no. 1, pp. 57-79, Jan. 2009. https://www.mendeley.com/research-papers/coordinated-control-afs-dyc-vehicle-handling-stability-based-optimal-guaranteed-cost-theory-2/
|
[13] |
J. X. Wang, R. R. Wang, H. Jing, M. Chadli, and N. Chen, "Coordinated active steering and four-wheel independently driving/braking control with control allocation, " in Proc. 2015 American Control Conference, Chicago, IL, USA, 2015, pp. 5420-5425.
|
[14] |
J. H. Guo, P. Hu, and R. B. Wang, "Nonlinear coordinated steering and braking control of vision-based autonomous vehicles in emergency obstacle avoidance, " IEEE Trans. Intell. Transp. Syst., vol. 17, no. 11, pp. 3230-3240, Nov. 2016. https://www.mendeley.com/research-papers/nonlinear-coordinated-steering-braking-control-visionbased-autonomous-vehicles-emergency-obstacle-av/
|
[15] |
R. Marino, S. Scalzi, and M. Netto, "Nested PID steering control for lane keeping in autonomous vehicles, " Control Eng. Pract., vol. 19, no. 12, pp. 1459-1467, Sep. 2011. https://www.mendeley.com/research-papers/nested-pid-steering-control-lane-keeping-autonomous-vehicles/
|
[16] |
S. Di Cairano, H. E. Tseng, D. Bernardini, and A. Bemporad, "Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain, " IEEE Trans. Control Syst. Technol., vol. 21, no. 4, pp. 1236-1248, Jul. 2013. https://www.mendeley.com/research-papers/vehicle-yaw-stability-control-coordinated-active-front-steering-differential-braking-tire-sideslip-a/
|
[17] |
S. Yim, J. Choi, and K. Yi, "Coordinated control of Hybrid 4WD vehicles for enhanced maneuverability and lateral stability, " IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1946-1950, May 2012. https://www.mendeley.com/research-papers/coordinated-control-hybrid-4wd-vehicles-enhanced-maneuverability-lateral-stability/
|
[18] |
B. Y. Li, H. P. Du, and W. H. Li, "Trajectory control for autonomous electric vehicles with in-wheel motors based on a dynamics model approach, " IET Intell. Transp. Syst., vol. 10, no. 5, pp. 318-330, Jun. 2016. https://www.mendeley.com/research-papers/trajectory-control-autonomous-electric-vehicles-inwheel-motors-based-dynamics-model-approach/
|
[19] |
N. Ando and H. Fujimoto, "Yaw-rate control for electric vehicle with active front/rear steering and driving/braking force distribution of rear wheels, " in Proc. 11th IEEE Int. Workshop on Advanced Motion Control, Nagaoka, Niigata, Japan, 2010, pp. 726-731. https://www.mendeley.com/research-papers/yawrate-control-electric-vehicle-active-frontrear-steering-drivingbraking-force-distribution-rear-wh/
|
[20] |
J. Tjonnas and T. A. Johansen, "Stabilization of automotive vehicles using active steering and adaptive brake control allocation, " IEEE Trans. Contr. Syst. Technol., vol. 18, no. 3, pp. 545-558, May 2010. https://www.mendeley.com/research-papers/stabilization-automotive-vehicles-using-active-steering-adaptive-brake-control-allocation/
|
[21] |
B. A. Guvenc, T. Acarman, and L. Guvenc, "Coordination of steering and individual wheel braking actuated vehicle yaw stability control, " in Proc. 2003 IEEE Intelligent Vehicles Symp., Columbus, OH, USA, 2003, pp. 288-293. https://www.mendeley.com/research-papers/coordination-steering-individual-wheel-braking-actuated-vehicle-yaw-stability-control/
|
[22] |
L. Zhai, T. M. Sun, and J. Wang, "Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle, " IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4726-4739, Jun. 2016. https://www.mendeley.com/research-papers/electronic-stability-control-based-motor-driving-braking-torque-distribution-four-inwheel-motor-driv/
|
[23] |
Z. B. Shuai, H. Zhang, J. M. Wang, J. Q. Li, and M. G. Ouyang, "Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over CAN network with time-varying delays, " IEEE Trans. Veh. Technol., vol. 63, no. 2, pp. 591-602, Feb. 2014. https://www.mendeley.com/research-papers/combined-afs-dyc-control-fourwheelindependentdrive-electric-vehicles-network-timevarying-delays/
|
[24] |
J. M. Wang and R. G. Longoria, "Coordinated and reconfigurable vehicle dynamics control, " IEEE Trans. Control Syst. Technol., vol. 17, no. 3, pp. 723-732, May 2009.
|
[25] |
M. Abe, Y. Kano, K. Suzuki, Y. Shibahata, and Y. Furukawa, "Side-slip control to stabilize vehicle lateral motion by direct yaw moment, " JSAE Rev., vol. 22, no. 4, pp. 413-419, Oct. 2001. https://www.mendeley.com/research-papers/sideslip-control-stabilize-vehicle-lateral-motion-direct-yaw-moment/
|
[26] |
J. M. Wang and R. G. Longoria, "Coordinated vehicle dynamics control with control distribution, " in Proc. American Control Conf., Minneapolis, MN, USA, 2006, pp. 5348-5353. https://www.mendeley.com/research-papers/coordinated-vehicle-dynamics-control-control-distribution-1/
|
[27] |
W. He, Y. T. Dong, and C. Y. Sun, "Adaptive neural impedance control of a robotic manipulator with input saturation, " IEEE Trans. Syst. Man Cybern. Syst., vol. 46, no. 3, pp. 334-344, Mar. 2016. https://www.mendeley.com/research-papers/adaptive-neural-impedance-control-robotic-manipulator-input-saturation-3/
|
[28] |
W. He, Z. C. Yan, C. Y. Sun, and Y. A. Chen, "Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer, " IEEE Trans. Cybern., vol. 47, no. 10, pp. 3452-3465, Oct. 2017. https://www.mendeley.com/research-papers/adaptive-neural-network-control-flapping-wing-micro-aerial-vehicle-disturbance-observer/
|
[29] |
W. He and S. Zhang, "Control design for nonlinear flexible wings of a robotic aircraft, " IEEE Trans. Control Syst. Technol., vol. 25, no. 1, pp. 351-357, Jan. 2017.
|
[30] |
J. J. He, D. A. Crolla, M. C. Levesley, and W. J. Manning, "Coordination of active steering, driveline, and braking for integrated vehicle dynamics control, " Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 220, no. 10, pp. 1401-1421, Oct. 2006. https://www.mendeley.com/research-papers/coordination-active-steering-driveline-braking-integrated-vehicle-dynamics-control/
|
[31] |
C. Hatipoglu, U. Özgüner, and K. A. Redmill, "Automated lane change controller design, " IEEE Trans. Intell. Transp. Syst., vol. 4, no. 1, pp. 13-22, Mar. 2003. https://www.mendeley.com/research-papers/automated-lane-change-controller-design/
|
[32] |
J. E. Naranjo, C. González, R. García, and T. de Pedro, "Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver, " IEEE Trans. Intell. Transp. Syst., vol. 9, no. 3, pp. 438-450, Sep. 2008. https://www.mendeley.com/research-papers/lanechange-fuzzy-control-autonomous-vehicles-overtaking-maneuver/
|
[33] |
T. C. Lin, S. Ji, C. E. Dickerson, and D. Battersby, "Coordinated control system for ADAS:Simulink Models, " figshare, 2017, doi: 10.17028/rd.lboro.431.
|
[34] |
J. H. Guo, K. Q. Li, and Y. G. Luo, "Coordinated control of autonomous four wheel drive electric vehicles for platooning and trajectory tracking using a hierarchical architecture, " J. Dyn. Syst. Meas. Control, vol. 137, no. 10, pp. 1-18, Oct. 2015. https://www.mendeley.com/research-papers/coordinated-control-autonomous-four-wheel-drive-electric-vehicles-platooning-trajectory-tracking-usi-2/
|
[35] |
G. D. Yin, N. Chen, and P. Li, "Improving handling stability performance of four-wheel steering vehicle via μ-synthesis robust control, " IEEE Trans. Veh. Technol., vol. 56, no. 5, pp. 2432-2439, Sep. 2007. https://www.mendeley.com/research-papers/improving-handling-stability-performance-fourwheel-steering-vehicle-via-%CE%BCsynthesis-robust-control/
|
[36] |
H. Dugoff, P. S. Fancher, and L. Segel, "Tire performance characteristics affecting vehicle response to steering and braking control inputs, " Final Report, Office of Vehicle Systems Research, US National Bureau of Standards, Washington, DC, USA, Contract CST-460, 1969.
|
[37] |
M. G. Plessen, D. Bernardini, H. Esen, and A. Bemporad, "Spatial-based predictive control and geometric corridor planning for adaptive cruise control coupled with obstacle avoidance, " IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 38-50, Jan. 2018. https://www.mendeley.com/research-papers/spatialbased-predictive-control-geometric-corridor-planning-adaptive-cruise-control-coupled-obstacle/
|
[38] |
G. B. Shi, S. H. Zhao, and J. Min, "Simulation analysis for electric power steering control system based on permanent magnetism synchronization motor, " in Proc. 2nd Int. Conf. Electronic & Mechanical Engineering and Information Technology, Paris, France, 2012. https://www.mendeley.com/research-papers/simulation-analysis-electric-power-steering-control-system-based-permanent-magnetism-synchronization-1/
|
[39] |
M. Naraghi, A. Roshanbin, and A. Tavasoli, "Vehicle stability enhancement-an adaptive optimal approach to the distribution of tyre forces, " Proc. Inst. Mech. Eng. Part D J. Autom. Eng., vol. 224, no. 4, pp. 443-453, Apr. 2010 https://www.mendeley.com/research-papers/vehicle-stability-enhancement-adaptive-optimal-approach-distribution-tyre-forces/
|
[40] |
S. S. Hu, Automatic Control Theory. 4th ed. Beijing, China:Beijing Science Press, 2001.
|
[41] |
N. R. Kapania and J. C. Gerdes, "Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling, " Veh. Syst. Dyn., vol. 53, no. 12, pp. 1687-1704, Jun. 2015. https://www.mendeley.com/research-papers/design-feedbackfeedforward-steering-controller-accurate-path-tracking-stability-limits-handling/
|
[42] |
G. Otten, T. J. A. de Vries, J. van Amerongen, A. M. Rankers, and E. W. Gaal, "Linear motor motion control using a learning feedforward controller, " IEEE/ASME Trans. Mechatron., vol. 2, no. 3, pp. 179-187, Sep. 1997. https://www.mendeley.com/research-papers/linear-motor-motion-control-using-learning-feedforward-controller-7/
|
[43] |
E. Kayacan, H. Ramon, and W. Saeys, "Robust trajectory tracking error model-based predictive control for unmanned ground vehicles, " IEEE/ASME Trans. Mechatron., vol. 21, no. 2, pp. 806-814, Apr. 2016. https://www.mendeley.com/research-papers/robust-trajectory-tracking-error-modelbased-predictive-control-unmanned-ground-vehicles-1/
|