IEEE/CAA Journal of Automatica Sinica
Citation: | Hongyan Guo, Dongpu Cao, Chen Hong, Chen Lv, Huaji Wang and Siqi Yang, "Vehicle Dynamic State Estimation: State of the Art Schemes and Perspectives," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 418-431, Feb. 2018. doi: 10.1109/JAS.2017.7510811 |
[1] |
F. Y. Wang and P. K. Wang, "Intelligent systems and technology for integrative and predictive medicine: An ACP approach, " ACM Trans. Intell. Syst. Technol., vol. 4, no. 2, pp. Article No. 32, Mar. 2013.
|
[2] |
T. Qu, H. Chen, D. P. Cao, H. Y. Guo, and B. Z. Gao, "Switching-based stochastic model predictive control approach for modeling driver steering skill, " IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 365-375, Feb. 2015. https://www.mendeley.com/research-papers/switchingbased-stochastic-model-predictive-control-approach-modeling-driver-steering-skill/
|
[3] |
F. Y. Wang, "Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications, " IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630-638, Sep. 2010. https://www.mendeley.com/research-papers/parallel-control-management-intelligent-transportation-systems-concepts-architectures-applications/
|
[4] |
T. X. Bai, S. Wang, Z. Shen, D. P. Cao, N. N. Zheng, and F. Y. Wang, "Parallel robotics and parallel unmanned systems: Framework, structure, process, platform and applications, " Acta Automat. Sin., vol. 43, no. 2, pp. 161-175, Feb. 2017.
|
[5] |
F. Y. Wang, J. Zhang, Q. L. Wei, X. H. Zheng, and L. Li, "PDP: Parallel dynamic programming, " IEEE/CAAJ. Automat. Sin., vol. 4, no. 1, pp. 1-5, Jan. 2017.
|
[6] |
O. Ghahabi and J. Hernando, "Deep learning backend for single and multisession i-vector speaker recognition, " IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 25, no. 4, pp. 807-817, Apr. 2017. https://www.mendeley.com/research-papers/deep-larning-backend-single-multisession-ivector-speaker-recognition/
|
[7] |
G. Xiong, F. H. Zhu, X. W. Liu, X. S. Dong, W. L. Huang, S. H. Chen, and K. Zhao, "Cyber-physical-social system in intelligent transportation, " IEEE/CAAJ. Automat. Sin., vol. 2, no. 3, pp. 320-333, Jul. 2015. https://www.mendeley.com/research-papers/cyberphysicalsocial-system-intelligent-transportation/
|
[8] |
L. Li and F. Y. Wang, Advanced Motion Control and Sensing for Intelligent Vehicles. Berlin Heidelberg, German:Springer-Verlag, 2010.
|
[9] |
L. Li, D. Wen, N. N. Zheng, and L. C. Shen, "Cognitive cars: A new frontier for ADAS research, " IEEE Trans. Intell. Transp. Syst., vol. 13, no. 1, pp. 395-407, Mar. 2012.
|
[10] |
H. H. Jing, Z. Y. Liu, and H. Chen, "A switched control strategy for antilock braking system with on/off valves, " IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1470-1484, May 2011.
|
[11] |
W. Zhang and X. X. Guo, "An ABS control strategy for commercial vehicle, " IEEE/ASME Trans. Mechatron., vol. 20, no. 1, pp. 384-392, Feb. 2015.
|
[12] |
P. Shakouri and A. Ordys, "Nonlinear model predictive control approach in design of adaptive cruise control with automated switching to cruise control, " Control Eng. Pract., vol. 26, pp. 160-177, May 2014. https://www.mendeley.com/research-papers/nonlinear-model-predictive-control-approach-design-adaptive-cruise-control-automated-switching-cruis-1/
|
[13] |
M. Amodeo, A. Ferrara, R. Terzaghi, and C. Vecchio, "Wheel slip control via second-order sliding-mode generation, " IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1, pp. 122-131, Mar. 2010. https://www.mendeley.com/research-papers/wheel-slip-control-via-secondorder-slidingmode-generation/
|
[14] |
K. J. Waldron and M. E. Abdallah, "An optimal traction control scheme for off-road operation of robotic vehicles, " IEEE/ASME Trans. Mechatron., vol. 12, no. 2, pp. 126-133, Apr. 2007. https://www.mendeley.com/research-papers/optimal-traction-control-scheme-offroad-operation-robotic-vehicles/
|
[15] |
W. Cho, J. Choi, C. Kim, S. Choi, and K. Yi, "Unified chassis control for the improvement of agility, maneuverability, and lateral stability, " IEEE Trans. Veh. Technol., vol. 61, no. 3, pp. 1008-1020, Mar. 2012. https://www.mendeley.com/research-papers/unified-chassis-control-improvement-agility-maneuverability-lateral-stability/
|
[16] |
A. Goodarzi and E. Esmailzadeh, "Design of a VDC system for all-wheel independent drive vehicles, " IEEE/ASME Trans. Mechatron., vol. 12, no. 6, pp. 632-639, Dec. 2007. https://www.mendeley.com/research-papers/design-vdc-system-allwheel-independent-drive-vehicles/
|
[17] |
K. Nam, H. Fujimoto, and Y. Hori, "Advanced motion control of electric vehicles based on robust lateral tire force control via active front steering, " IEEE/ASME Trans. Mechatron., vol. 19, no. 1, pp. 289-299, Feb. 2014. https://www.mendeley.com/research-papers/advanced-motion-control-electric-vehicles-based-robust-lateral-tire-force-control-via-active-front-s-2/
|
[18] |
H. Chen and K. H. Guo, "Constrained H∞ control of active suspensions: An LMI approach, " IEEE Trans. Control Syst. Technol., vol. 13, no. 3, pp. 412-421, May 2005. https://www.mendeley.com/research-papers/constrained-h-control-active-suspensions-lmi-approach/
|
[19] |
W. C. Sun, H. J. Gao, and O. Kaynak, "Adaptive Backstepping control for active suspension systems with hard constraints, " IEEE/ASME Trans. Mechatron., vol. 18, no. 3, pp. 1072-1079, Jun. 2013. https://www.mendeley.com/research-papers/adaptive-backstepping-control-active-suspension-systems-hard-constraints-2/
|
[20] |
M. E. Hoque, M. Takasaki, Y. Ishino, and T. Mizuno, "Development of a three-axis active vibration isolator using zero-power control, " IEEE/ASME Trans. Mechatron., vol. 11, no. 4, pp. 462-470, Aug. 2006. https://www.mendeley.com/research-papers/development-threeaxis-active-vibration-isolator-using-zeropower-control/
|
[21] |
C. M. Farmer, "New evidence concerning fatal crashes of passenger vehicles before and after adding antilock braking systems, " Accid. Anal. Prev., vol. 33, no. 3, pp. 361-369, May 2001. https://www.mendeley.com/research-papers/new-evidence-concerning-fatal-crashes-passenger-vehicles-before-after-adding-antilock-braking-system/
|
[22] |
K. T. Leung, J. F. Whidborne, D. Purdy, and A. Dunoyer, "A review of ground vehicle dynamic state estimations utilising GPS/INS, " Veh. Syst. Dyn., vol. 49, no. 1-2, pp. 29-58, Jan. 2011.
|
[23] |
H. F. Grip, L. Imsland, T. A. Johansen, T. I. Fossen, J. C. Kalkkuhl, and A. Suissa, "Nonlinear vehicle velocity observer with road-tire friction adaptation, " in Proc. 45th IEEE Conf. Decision and Control, San Diego, CA, USA, 2006, pp. 3603-3608. https://www.mendeley.com/research-papers/nonlinear-vehicle-velocity-observer-roadtire-friction-adaptation/
|
[24] |
J. Ryu, State and Parameter Estimation for Vehicle Dynamics Control Using GPS. Palo Alto, CA, USA:Stanford University, 2004.
|
[25] |
P. Freeman, R. Pandita, N. Srivastava, and G. Balas, "Model-based and data-driven fault detection performance for a small UAV, "IEEE/ASME Trans. Mechatron., vol. 18, no. 4, pp. 1300-1309, Aug. 2013. https://www.mendeley.com/research-papers/modelbased-datadriven-fault-detection-performance-small-uav/
|
[26] |
D. Rubinstein and R. Hitron, "A detailed multi-body model for dynamic simulation of off-road tracked vehicles, " J. Terramechan., vol. 41, no. 2-3, pp. 163-173, Apr. -Jul. 2004. https://www.mendeley.com/research-papers/detailed-multibody-model-dynamic-simulation-offroad-tracked-vehicles/
|
[27] |
R. Rajamani, Vehicle Dynamics and Control. New York, USA:Springer-Verlag, 2006.
|
[28] |
H. F. Grip, L. Imsland, T. A. Johansen, J. C. Kalkkuhl, and A. Suissa, "Vehicle sideslip estimation: Design, implementation, and experimental validation, "IEEE Control Syst. Mag., vol. 29, no. 5, pp. 36-52, Jan. 2009. https://www.mendeley.com/research-papers/vehicle-sideslip-estimation-design-implementation-experimental-validation/
|
[29] |
L. R. Ray, "Nonlinear tire force estimation and road friction identification: Simulation and experiments, "Automatica, vol. 33, no. 10, pp. 1819-1833, Oct. 1997. https://www.mendeley.com/research-papers/nonlinear-tire-force-estimation-road-friction-identification-simulation-experiments/
|
[30] |
L. Imsland, T. A. Johansen, T. I. Fossen, H. F. Grip, J. C. Kalkkuhl, and A. Suissa, "Vehicle velocity estimation using nonlinear observers, " Automatica, vol. 42, no. 12, pp. 2091-2103, Dec. 2006. https://www.mendeley.com/research-papers/vehicle-velocity-estimation-using-nonlinear-observers-4/
|
[31] |
E. Hashemia, S. Khosravani, A. Khajepour, A. Kasaiezadeh, S. K. Chen, and B. Litkouhi, "Longitudinal vehicle state estimation using nonlinear and parameter-varying observers, " Mechatronics, vol. 43, pp. 28-39, May 2017. https://www.mendeley.com/research-papers/longitudinal-vehicle-state-estimation-using-nonlinear-parametervarying-observers/
|
[32] |
H. F. Grip, L. Imsland, T. A. Johansen, T. I. Fossen, J. C. Kalkkuhl, and A. Suissa, "Nonlinear vehicle side-slip estimation with friction adaptation, " Automatica, vol. 44, no. 3, pp. 611-622, Mar. 2008. https://www.mendeley.com/research-papers/nonlinear-vehicle-sideslip-estimation-friction-adaptation/
|
[33] |
L. Imsland, H. F. Grip, T. A. Johansen, T. I. Fossen, J. C. Kalkkuhl, and A. Suissa, "Nonlinear observer for vehicle velocity with friction and road bank angle adaptation-validation and comparison with an extended Kalman filter, " in Proc. Society of Automotive Engineers (SAE), Michigan, USA, 2007. https://www.mendeley.com/research-papers/nonlinear-observer-vehicle-velocity-friction-road-bank-angle-adaptationvalidation-comparison-extende/
|
[34] |
L. H. Zhao, Z. Y. Liu, and H. Chen, "Design of a nonlinear observer for vehicle velocity estimation and experiments, " IEEE Trans. Control Syst. Technol., vol. 19, no. 3, pp. 664-672, May 2011. https://www.mendeley.com/research-papers/design-nonlinear-observer-vehicle-velocity-estimation-experiments/
|
[35] |
H. Y. Guo, H. Chen, F. Xu, F. Wang, and G. L. Lu, "Implementation of EKF for vehicle velocities estimation on FPGA, " IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3823-3835, Sep. 2013. https://www.mendeley.com/research-papers/implementation-ekf-vehicle-velocities-estimation-fpga/
|
[36] |
A. Katriniok and D. Abel, "Adaptive EKF-based vehicle state estimation with online assessment of local observability, " IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1368-1381, Jul. 2016. https://www.mendeley.com/research-papers/adaptive-ekfbased-vehicle-state-estimation-online-assessment-local-observability/
|
[37] |
H. Lee, "Reliability indexed sensor fusion for vehicle longitudinal and lateral velocity estimation, " Int. J. Veh. Des., vol. 33, no. 4, pp. 351-364, Dec. 2003.
|
[38] |
J. Kim, "Effect of vehicle model on the estimation of lateral vehicle dynamics, "Int. J. Automot. Technol., vol. 11, no. 3, pp. 331-337, Jun. 2010.
|
[39] |
M. Basset, C. Zimmer, and G. L. Gissinger, "Fuzzy approach to the real time longitudinal velocity estimation of a FWD car in critical situations, "Veh. Syst. Dyn., vol. 27, no. 5-6, pp. 477-489, Nov. 1997.
|
[40] |
H. Y. Guo, H. Chen, D. P. Cao, and W. W. Jin, "Design of a reduced-order non-linear observer for vehicle velocities estimation, "IET Control Theory Appl., vol. 7, no. 17, pp. 2056-2068, Nov. 2013.
|
[41] |
T. A. Wenzel, K. J. Burnham, M. V. Blundell, and R. A. Williams, "Dual extended Kalman filter for vehicle state and parameter estimation, " Veh. Syst. Dyn., vol. 44, no. 2, pp. 153-171, Feb. 2006. https://www.mendeley.com/research-papers/dual-extended-kalman-filter-vehicle-state-parameter-estimation-5/
|
[42] |
L. Imsland, T. A. Johansen, H. F. Grip, and T. I. Fossen, "On non-linear unknown input observers-applied to lateral vehicle velocity estimation on banked roads, " Int. J. Control, vol. 80, no. 11, pp. 1741-1750, Nov. 2007. https://www.mendeley.com/research-papers/nonlinear-unknown-input-observersapplied-lateral-vehicle-velocity-estimation-banked-roads/
|
[43] |
A. Y. Ungoren, H. Peng, and H. E. Tseng, "A study on lateral speed estimation methods, "Int. J. Veh. Auton. Syst., vol. 2, no. 1-2, pp. 126-144, Jul. 2004. https://www.mendeley.com/research-papers/study-lateral-speed-estimation-methods-6/
|
[44] |
J. J. Oh and S. B. Choi, "Vehicle velocity observer design using 6-D IMU and multiple-observer approach, "IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1865-1879, Dec. 2012. https://www.mendeley.com/research-papers/vehicle-velocity-observer-design-using-6d-imu-multipleobserver-approach/
|
[45] |
M. Klomp, Y. L. Gao, and F. Bruzelius, "Longitudinal velocity and road slope estimation in hybrid electric vehicles employing early detection of excessive wheel slip, " Veh. Syst. Dyn., vol. 52, no. S1, pp. 172-188, May 2014. https://www.mendeley.com/research-papers/longitudinal-velocity-road-slope-estimation-hybrid-electric-vehicles-employing-early-detection-exces/
|
[46] |
E. Hashemia, M. Pirani, A. Khajepour, A. Kasaiezadeh, S. K. Chen, and B. Litkouhi, "Corner-based estimation of tire forces and vehicle velocities robust to road conditions, "Control Eng. Pract., vol. 61, pp. 28-40, Apr. 2017. https://www.mendeley.com/research-papers/cornerbased-estimation-tire-forces-vehicle-velocities-robust-road-conditions/
|
[47] |
Y. Suzuki and M. Takeda, "An overview on vehicle lateral dynamics and yaw stability control systems, " J. Adv. Veh. Eng., vol. 2, no. 4, pp. 182-190, 2016. http://www.jadve.com/index.php/jadve/article/view/58
|
[48] |
L. Li, Y. S. Lu, R. R. Wang, and J. Chen, "A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with MPC, " IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3389-3401, Apr. 2017. https://www.mendeley.com/research-papers/threedimensional-dynamics-control-framework-vehicle-lateral-stability-rollover-prevention-via-active/
|
[49] |
S. Sternlund, J. Strandroth, M. Rizzi, A. Lie, and C. Tingvall, "The effectiveness of lane departure warning systems-a reduction in real-world passenger car injury crashes, " Traffic Inj. Prev., vol. 18, no. 2, pp. 225-229, Feb. 2016. https://www.mendeley.com/research-papers/effectiveness-lane-departure-warning-systemsa-reduction-realworld-passenger-car-injury-crashes/
|
[50] |
J. Stéphant, A. Charara, and D. Meizel, "Virtual sensor: Application to vehicle sideslip angle and transversal forces, " IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 278-289, Apr. 2004.
|
[51] |
K. Nam, S. Oh, H. Fujimoto, and Y. Hori, "Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches, " IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 988-1000, Mar. 2013. https://www.mendeley.com/research-papers/estimation-sideslip-roll-angles-electric-vehicles-using-lateral-tire-force-sensors-through-rls-kalma/
|
[52] |
H. Y. Zhao and H. Chen, "Estimation of vehicle yaw rate and side slip angle using moving horizon strategy, "in Proc. 6th World Congr. Control and Automation, Dalian, China, 2006, pp. 1828-1832. https://www.mendeley.com/research-papers/estimation-vehicle-yaw-rate-side-slip-angle-using-moving-horizon-strategy/
|
[53] |
M. Gadola, D. Chindamo, M. Romano, and F. Padula, "Development and validation of a Kalman filter-based model for vehicle slip angle estimation, " Veh. Syst. Dyn., vol. 52, no. 1, pp. 68-84, Jan. 2014. https://www.mendeley.com/research-papers/development-validation-kalman-filterbased-model-vehicle-slip-angle-estimation/
|
[54] |
S. Antonov, A. Fehn, and A. Kugi, "Unscented kalman filter for vehicle state estimation, " Veh. Syst. Dyn., vol. 49, no. 9, pp. 1497-1520, Sep. 2011. https://www.mendeley.com/research-papers/unscented-kalman-filter-vehicle-state-estimation/
|
[55] |
H. Y. Guo, H. Chen, H. T. Ding, and Y. F. Hu, "Vehicle side-slip angle estimation based on uni-tire model, " Control Theory Appl., vol. 27, no. 9, pp. 1131-1139, Sep. 2010.
|
[56] |
H. H. Kim and J. Ryu, "Sideslip angle estimation considering short-duration longitudinal velocity variation, "Int. J. Automot. Technol., vol. 12, no. 4, pp. 545-553, Aug. 2011. https://www.mendeley.com/research-papers/sideslip-angle-estimation-considering-shortduration-longitudinal-velocity-variation/
|
[57] |
B. C. Chen and F. C. Hsieh, "Sideslip angle estimation using extended Kalman filter, " Veh. Syst. Dyn., vol. 46, no. S1, pp. 353-364, Sep. 2008. https://www.mendeley.com/research-papers/sideslip-angle-estimation-using-extended-kalman-filter/
|
[58] |
G. Baffet, A. Charara, and D. Lechner, "Estimation of vehicle sideslip, tire force and wheel cornering stiffness, " Control Eng. Pract., vol. 17, no. 11, pp. 1255-1264, Nov. 2009. https://www.mendeley.com/research-papers/estimation-vehicle-sideslip-tire-force-wheel-cornering-stiffness/
|
[59] |
J. Bechtoff, L. Koenig, and R. Isermann, "Cornering stiffness and sideslip angle estimation for integrated vehicle dynamics control, " IFAC-Pap. Online, vol. 49, no. 11, pp. 297-304, Dec. 2016. https://www.mendeley.com/research-papers/cornering-stiffness-sideslip-angle-estimation-integrated-vehicle-dynamics-control/
|
[60] |
D. Piyabongkarn, R. Rajamani, J. A. Grogg, and J. Y. Lew, "Development and experimental evaluation of a slip angle estimator for vehicle stability control, " IEEE Trans. Control Syst. Technol., vol. 17, no. 1, pp. 78-88, Jan. 2009. https://www.mendeley.com/research-papers/development-experimental-evaluation-slip-angle-estimator-vehicle-stability-control/
|
[61] |
S. Han and K. Huh, "Monitoring system design for lateral vehicle motion, " IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1394-1403, May 2011. doi: 10.1109/TVT.2011.2122312
|
[62] |
B. L. Boada, M. J. L. Boada, and V. Diaz, "Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an unscented Kalman filter algorithm, " Mech. Syst. Signal Process., vol. 72-73, pp. 832-845, May 2016. https://www.mendeley.com/research-papers/vehicle-sideslip-angle-measurement-based-sensor-data-fusion-using-integrated-anfis-unscented-kalman-2/
|
[63] |
F. Cheli, E. Sabbioni, M. Pesce, and S. Melzi, "A methodology for vehicle sideslip angle identification: Comparison with experimental data, " Veh. Syst. Dyn., vol. 45, no. 6, pp. 549-563, Jun. 2007.
|
[64] |
S. Melzi and E. Sabbioni, "On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results, " Mech. Syst. Signal Process., vol. 25, no. 6, pp. 2005-2019, Aug. 2011. https://www.mendeley.com/research-papers/vehicle-sideslip-angle-estimation-through-neural-networks-numerical-experimental-results/
|
[65] |
X. J. Gao, Z. P. Yu, J. Neubeck, and J. Wiedemann, "Sideslip angle estimation based on input-output linearisation with tire-road friction adaptation, " Veh. Syst. Dyn., vol. 48, no. 2, pp. 217-234, Feb. 2010. https://www.mendeley.com/research-papers/sideslip-angle-estimation-based-inputoutput-linearisation-tireroad-friction-adaptation/
|
[66] |
D. W. Pi, N. Chen, J. X. Wang, and B. J. Zhang, "Design and evaluation of sideslip angle observer for vehicle stability control, " Int. J. Automat. Technol., vol. 12, no. 3, pp. 391-399, Jun. 2011. https://www.mendeley.com/research-papers/design-evaluation-sideslip-angle-observer-vehicle-stability-control/
|
[67] |
M. Doumiati, A. Victorino, A. Charara, G. Baffet, and D. Lechner, "Observers for vehicle tyre/road forces estimation: Experimental validation, " Veh. Syst. Dyn., vol. 48, no. 11, pp. 1345-1378, Nov. 2010.
|
[68] |
M. Doumiati, A. C. Victorino, A. Charara, and D. Lechner, "Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle, " IEEE/ASME Trans. Mechatron., vol. 16, no. 4, pp. 601-614, Aug. 2011. https://www.mendeley.com/research-papers/onboard-realtime-estimation-vehicle-lateral-tireroad-forces-sideslip-angle/
|
[69] |
J. Matuško, I. Petroić, and N. Perić, "Neural network based tire/road friction force estimation, " Eng. Appl. Artif. Intell., vol. 21, no. 3, pp. 442-456, Apr. 2008. https://www.mendeley.com/research-papers/neural-network-based-tireroad-friction-force-estimation/
|
[70] |
X. Li, X. Song, and C. Chan, "Reliable vehicle sideslip angle fusion estimation using low-cost sensors, " Measurement, vol. 51, pp. 241-258, May 2014. https://www.mendeley.com/research-papers/reliable-vehicle-sideslip-angle-fusion-estimation-using-lowcost-sensors/
|
[71] |
R. Anderson and D. M. Bevly, "Using GPS with a model-based estimator to estimate critical vehicle states, " Veh. Syst. Dyn., vol. 48, no. 12, pp. 1413-1438, Dec. 2010. https://www.mendeley.com/research-papers/using-gps-modelbased-estimator-estimate-critical-vehicle-states/
|
[72] |
G. Baffet, A. Charara, D. Lechner, and D. Thomas, "Experimental evaluation of observers for tire-road forces, sideslip angle and wheel cornering stiffness, " Veh. Syst. Dyn., vol. 46, no. 6, pp. 501-520, Jun. 2008. https://www.mendeley.com/research-papers/experimental-evaluation-observers-tireroad-forces-sideslip-angle-wheel-cornering-stiffness/
|
[73] |
L. R. Ray, "Nonlinear state and tire force estimation for advanced vehicle control, " IEEE Trans. Control Syst. Technol., vol. 3, no. 1, pp. 117-125, Mar. 1995. https://www.mendeley.com/research-papers/nonlinear-state-tire-force-estimation-advanced-vehicle-control/
|
[74] |
C. Novara, F. Ruiz, and M. Milanese, "Direct identification of optimal SM-LPV filters and application to vehicle yaw rate estimation, " IEEE Trans. Control Syst. Technol., vol. 19, no. 1, pp. 5-17, Jan. 2011. https://www.mendeley.com/research-papers/direct-identification-optimal-smlpv-filters-application-vehicle-yaw-rate-estimation/
|
[75] |
J. B. Li, X. L. Liang, and W. Q. Yue, "The vehicle dynamic parameters recognition of in-wheel motor driven electric vehicle, " Veh. Syst. Dyn., vol. 15, pp. 443-447, Dec. 2011. https://www.mendeley.com/research-papers/vehicle-dynamic-parameters-recognition-inwheel-motor-driven-electric-vehicle/
|
[76] |
L. Y. Hsu and T. L. Chen, "Vehicle full-state estimation and prediction system using state observers, " IEEE Trans. Veh. Technol., vol. 58, no. 6, pp. 2651-2662, Jul. 2009. https://www.mendeley.com/research-papers/vehicle-fullstate-estimation-prediction-system-using-state-observers/
|
[77] |
J. J. Rath, M. Defoort, and C. K. Veluvolu, "Rollover index estimation in the presence of sensor faults, unknown inputs, and uncertainties, " IEEE Trans. Intell. Transp. Syst., vol. 17, no. 10, pp. 2949-2959, Oct. 2016. https://www.mendeley.com/research-papers/rollover-index-estimation-presence-sensor-faults-unknown-inputs-uncertainties/
|
[78] |
H. E. Tseng, L. Xu, and D. Hrovat, "Estimation of land vehicle roll and pitch angles, " Veh. Syst. Dyn., vol. 45, no. 5, pp. 433-443, May 2007. https://www.mendeley.com/research-papers/estimation-land-vehicle-roll-pitch-angles/
|
[79] |
J. Oh and S. B. Choi, "Vehicle roll and pitch angle estimation using a cost-effective six-dimensional inertial measurement unit, " Proc. Inst. Mech. Eng. D J. Automob. Eng., vol. 227, no. 4, pp. 577-590, Apr. 2013. https://www.mendeley.com/research-papers/vehicle-roll-pitch-angle-estimation-using-costeffective-sixdimensional-inertial-measurement-unit/
|
[80] |
A. Hac, D. Nichols, and D. Sygnarowicz, "Estimation of vehicle roll angle and side slip for crash sensing, " in Proc. SAE Int. Congr., MI, USA, 2010. https://www.mendeley.com/research-papers/estimation-vehicle-roll-angle-side-slip-crash-sensing/
|
[81] |
S. K. Chen, N. Moshchuk, F. Nardi, and J. Ryu, "Vehicle rollover avoidance, " IEEE Control Syst., vol. 30, no. 4, pp. 70-85, Aug. 2010. https://www.mendeley.com/research-papers/vehicle-rollover-avoidance/
|
[82] |
R. Rajamani, D. Piyabongkarn, V. Tsourapas, and J. Lew, "Parameter and state estimation in vehicle roll dynamics, " IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1558-1567, Dec. 2011. https://www.mendeley.com/research-papers/parameter-state-estimation-vehicle-roll-dynamics/
|
[83] |
U. H. Syed and Vigliani, "Vehicle side slip ang roll angle estimation, " in Proc. SAE 2016 World Congr. Exhibition, United States, 2016.
|
[84] |
C. F. Zong, P. Song, and D. Hu, "Estimation of vehicle states and tire-road friction using parallel extended Kalman filtering, " J. Zhejiang Univ. -Sci. A, vol. 12, no. 6, pp. 446-452, Jun. 2011. https://www.mendeley.com/research-papers/estimation-vehicle-states-tireroad-friction-using-parallel-extended-kalman-filtering/
|
[85] |
J. Villagra, B. dÁndréa-Novel, M. Fliess, and H. Mounier, "A diagnosis-based approach for tire-road forces and maximum friction estimation, " Control Eng. Pract., vol. 19, no. 2, pp. 174-184, Feb. 2011. https://www.mendeley.com/research-papers/diagnosisbased-approach-tireroad-forces-maximum-friction-estimation/
|
[86] |
J. Oh, Y. Noh, and S. B. Choi, "Real-time offset error compensation of 6D IMU mounted on ground vehicles using disturbance observer, " J. Adv. Comput. Netw., vol. 1, no. 2, pp. 82-87, Jun. 2013. https://www.mendeley.com/research-papers/realtime-offset-error-compensation-6d-imu-mounted-ground-vehicles-using-disturbance-observer/
|
[87] |
R. M. Brach, "Modeling combined braking and steering tire forces, " in Proc. Society of Automotive Engineers (SAE), Michigan, USA, 2000. https://www.mendeley.com/research-papers/modeling-combined-braking-steering-tire-forces/
|
[88] |
A. T. Van Zanten, "Bosch ESP systems:5 years of experience, " in Proc. Society of Automotive Engineers (SAE), Michigan, USA, 2000.
|
[89] |
N. P. Du, N. Zhang, and G. M. Dong, "Stabilizing vehicle lateral dynamics with considerations of parameter uncertainties and control saturation through robust yaw control, " IEEE Trans. Veh. Technol., vol. 59, no. 5, pp. 2593-2597, Jun. 2010. https://www.mendeley.com/research-papers/stabilizing-vehicle-lateral-dynamics-considerations-parameter-uncertainties-control-saturation-throu/
|
[90] |
M. C. Best and T. J. Gordon, "An extended adaptive Kalman filter for real-time state estimation of vehicle handling dynamics, " Veh. Syst. Dyn., vol. 34, no. 1, pp. 57-75, Jul. 2000. https://www.mendeley.com/research-papers/extended-adaptive-kalman-filter-realtime-state-estimation-vehicle-handling-dynamics-16/
|
[91] |
M. Oudghiri, M. Chadli, and A. El Hajjaji, "Lateral vehicle velocity estimation using fuzzy sliding mode observer, " in Proc. Mediterranean Conf. Control and Automation, Athens, Greece, 2007, pp. 1-6. https://www.mendeley.com/research-papers/lateral-vehicle-velocity-estimation-using-fuzzy-sliding-mode-observer-3/
|
[92] |
H. Chen and F. Allgower, "A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, " Automatica, vol. 34, no. 10, pp. 1205-1217, Oct. 1998. https://www.mendeley.com/research-papers/quasiinfinite-horizon-nonlinear-model-predictive-control-scheme-guaranteed-stability/
|
[93] |
X. H. Xia and J. F. Zhang, "Operation efficiency optimisation modelling and application of model predictive control, " IEEE/CAA J. Autom. Sinica, vol. 2, no. 2, pp. 166-172, Apr. 2015. https://www.mendeley.com/research-papers/operation-efficiency-optimisation-modelling-application-model-predictive-control-3/
|
[94] |
S. Lucia, M. Kögel, P. Zometa, D. E. Quevedo, and R. Findeisen, "Predictive control, embedded cyberphysical systems and systems of systems-a perspective, " Ann. Rev. Control, vol. 41, pp. 193-207, May 2016.
|
[95] |
F. Y. Wang, X. Wang, L. X. Li, and L. Li, "Steps toward parallel intelligence, "IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 345-348, Oct. 2016. https://www.mendeley.com/research-papers/steps-toward-parallel-intelligence/
|
[96] |
F. Y. Wang, "Control 5. 0: From newton to Merton in popperś cyber-social-physical spaces, " IEEE/CAA J. Autom. Sinica, vol. 34, no. 4, pp. 223-234, Jul. 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb-ywb201603001
|
[97] |
J. Na, A. S. Chen, G. Herrmann, R. Burke, and C. Brace, "Vehicle engine torque estimation via unknown input observer and adaptive parameter estimation, " IEEE Trans. Veh. Technol., 2017, doi: 10.1109/TVT.2017.2737440,tobepublished.
|