IEEE/CAA Journal of Automatica Sinica
Citation: | Huazhen Fang, Ning Tian, Yebin Wang, MengChu Zhou and Mulugeta A. Haile, "Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 401-417, Feb. 2018. doi: 10.1109/JAS.2017.7510808 |
[1] |
Late Rev. Mr. Bayes, and F. R. S, "LⅡ. An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S, " Phil. Trans., vol. 53, pp. 370-418, Jan. 1763.
|
[2] |
A. I. Dale, "Bayes or Laplace? An examination of the origin and early applications of Bayes' theorem, " Arch. Hist. Exact Sci., vol. 27, no. 1, pp. 23-47, Mar. 1982.
|
[3] |
D. Malakoff, "Bayes offers a 'new' way to make sense of numbers, " Science, vol. 286, no. 5444, pp. 1460-1464, Nov. 1999. http://www.mendeley.com/research/bayes-offers-new-way-make-sense-numbers/
|
[4] |
A. Jackson, "Kalman receives national medal of science, " Not. AMS, vol. 57, no. 1, pp. 56-57, Jan. 2010.
|
[5] |
R. E. Kalman, "A new approach to linear filtering and prediction problems, " J. Basic Eng., vol. 82, no. 1, pp. 35-45, Mar. 1960. https://www.mendeley.com/research-papers/new-approach-linear-filtering-prediction-problems-63/
|
[6] |
Y. Ho and R. Lee, "A Bayesian approach to problems in stochastic estimation and control, " IEEE Trans. Automat. Control, vol. 9, no. 4, pp. 333-339, Oct. 1964. https://www.mendeley.com/research-papers/bayesian-approach-problems-stochastic-estimation-control-8/
|
[7] |
B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs:Prentice-Hall, 1979. https://www.mendeley.com/research-papers/optimal-filtering/
|
[8] |
Wikipedia Contributors, "Kalmanfilterg-Wikipedia, the free encyclopedia, "[Online]. Available: https: //en. wikipedia. org/wiki/Kalmanfilterg.
|
[9] |
F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. Orlowska-Kowalska, and S. Katsura, "Industrial applications of the Kalman filter: A review, " IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5458-5471, Dec. 2013.
|
[10] |
M. Boutayeb, H. Rafaralahy, and M. Darouach, "Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems, " IEEE Trans. Automat. Control, vol. 42, no. 4, pp. 581-586, Apr. 1997. https://www.mendeley.com/research-papers/convergence-analysis-extended-kalman-filter-used-observer-nonlinear-deterministic-discretetime-syste/
|
[11] |
A. J. Krener, "The convergence of the extended Kalman filter, " in Directions in Mathematical Systems Theory and Optimization, A. Rantzer and C. Byrnes, Eds. Berlin, Heidelberg:Springer, 2003, vol. 286, pp. 173-182. https://www.mendeley.com/research-papers/convergence-extended-kalman-filter-4/
|
[12] |
S. Kluge, K. Reif, and M. Brokate, "Stochastic stability of the extended Kalman filter with intermittent observations, " IEEE Trans. Automat. Control, vol. 55, no. 2, pp. 514-518, Feb. 2010. https://www.mendeley.com/research-papers/stochastic-stability-extended-kalman-filter-intermittent-observations/
|
[13] |
S. Bonnabel and J. J. Slotine, "A contraction theory-based analysis of the stability of the deterministic extended Kalman filter, " IEEE Trans. Automat. Control, vol. 60, no. 2, pp. 565-569, Feb. 2015. https://www.mendeley.com/research-papers/contraction-theorybased-analysis-stability-deterministic-extended-kalman-filter/
|
[14] |
A. Barrau and S. Bonnabel, "The invariant extended Kalman filter as a stable observer, " IEEE Trans. Automat. Control, vol. 62, no. 4, pp. 1797-1812, Apr. 2017. https://www.mysciencework.com/publication/show/invariant-extended-kalman-filter-stable-observer-5847254a
|
[15] |
H. Tanizaki, Nonlinear Filters:Estimation and Applications. Berlin Heidelberg:Springer-Verlag, 1996.
|
[16] |
S. Särkkä, Bayesian Filtering and Smoothing. Cambridge:Cambridge University Press, 2013.
|
[17] |
M. Roth and F. Gustafsson, "An efficient implementation of the second order extended Kalman filter, " in Proc. 14th Int. Conf. Information Fusion (FUSION), Chicago, IL, USA, pp. 1-6, 2011. http://www.mendeley.com/research/efficient-implementation-second-order-extended-kalman-filter/
|
[18] |
A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York:Academic Press, 1970.
|
[19] |
B. M. Bell and F. W. Cathey, "The iterated Kalman filter update as a gauss-newton method, " IEEE Trans. Automat. Control, vol. 38, no. 2, pp. 294-297, Feb. 1993. https://www.mendeley.com/research-papers/iterated-kalman-filter-update-gaussnewton-method/
|
[20] |
S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, "A new approach for filtering nonlinear systems, " in Proc. 1995 American Control Conf., vol. 3, Seattle, WA, USA, pp. 1628-1632, 1995. https://www.mendeley.com/research-papers/new-approach-filtering-nonlinear-systems-71/
|
[21] |
S. J. Julier and J. K. Uhlmann, "A new extension of the Kalman filter to nonlinear systems, " in Proc. AeroSense:The 11th International Symp. Aerospace/Defence Sensing, Simulation and Controls, Orlando, FL, USA, pp. 182-193, 1997. https://www.mendeley.com/research-papers/new-extension-kalman-filter-nonlinear-systems-143/
|
[22] |
S. J. Julier and J. K. Uhlmann, "Unscented filtering and nonlinear estimation, " Proc. IEEE, vol. 92, no. 3, pp. 401-422, 2004. doi: 10.1109/JPROC.2003.823141
|
[23] |
E. Wan and R. van der Merwe, "The unscencted Kalman filter, " in Kalman Filtering and Neural Networks, S. Haykin, Ed. New York:John Wiley & Sons, 2001, pp. 221-269. http://www.mendeley.com/catalog/kalman-filtering-neural-networks-6/
|
[24] |
H. M. T. Menegaz, J. Y. Ishihara, G. A. Borges, and A. N. Vargas, "A systematization of the unscented Kalman filter theory, " IEEE Trans. Automat. Control, vol. 60, no. 10, pp. 2583-2598, Oct. 2015. https://www.mendeley.com/research-papers/systematization-unscented-kalman-filter-theory-10/
|
[25] |
R. Van Der Merwe and E. A. Wan, "The square-root unscented Kalman filter for state and parameter-estimation, " in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 6, Salt Lake City, UT, USA, pp. 3461-3464, 2001.
|
[26] |
S. J. Julier, "The spherical simplex unscented transformation, " in Proc. American Control Conf., vol. 3, Denver, CO, USA, pp. 2430-2434, 2003. http://www.mendeley.com/catalog/spherical-simplex-unscented-transformation/
|
[27] |
W. C. Li, P. Wei, and X. C. Xiao, "A novel simplex unscented transform and filter, " in Proc. Int. Symp. Communications and Information Technologies, Sydney, Australia, pp. 926-931, 2007. https://www.mendeley.com/research-papers/novel-simplex-unscented-transform-filter/
|
[28] |
K. Ponomareva, P. Date, and Z. D. Wang, "A new unscented Kalman filter with higher order moment-matching, " in Proc. 19th Int. Symp. Mathematical Theory of Networks and Systems, Budapest, Hungary, pp. 1609-1613, 2010.
|
[29] |
A. C. Charalampidis and G. P. Papavassilopoulos, "Development and numerical investigation of new non-linear Kalman filter variants, " IET Control Theory Appl., vol. 5, no. 10, pp. 1155-1166, Aug. 2011. https://www.mendeley.com/research-papers/development-numerical-investigation-new-nonlinear-kalman-filter-variants-3/
|
[30] |
J. Dunik, M. Simandl, and O. Straka, "Unscented Kalman filter: Aspects and adaptive setting of scaling parameter, " IEEE Trans. Automat. Control, vol. 57, no. 9, pp. 2411-2416, Sep. 2012. http://www.mendeley.com/catalog/unscented-kalman-filter-aspects-adaptive-setting-scaling-parameter/
|
[31] |
J. L. Crassidis, "Sigma-point Kalman filtering for integrated GPS and inertial navigation, " IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 2, pp. 750-756, Apr. 2006. http://www.mendeley.com/catalog/sigmapoint-kalman-filtering-integrated-gps-inertial-navigation/
|
[32] |
R. van der Merwe, "Sigma-point Kalman filters for probabilistic inference in dynamic state-space models, " Ph.D. dissertation, Oregon Health & Science University, 2004. http://www.mendeley.com/catalog/sigmapoint-kalman-filters-probabilistic-inference-dynamic-statespace-models/
|
[33] |
K. Ito and K. Xiong, "Gaussian filters for nonlinear filtering problems, " IEEE Trans. Automat. Control, vol. 45, no. 5, pp. 910-927, May 2000. https://www.mendeley.com/research-papers/gaussian-filters-nonlinear-filtering-problems/
|
[34] |
G. Evensen, "Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, " J. Geophys. Res. : Oceans, vol. 99, no. C5, pp. 10143-10162, May 1994. http://www.mendeley.com/catalog/sequential-data-assimilation-nonlinear-quasigeostrophic-model-using-monte-carlo-methods-forecast-err/
|
[35] |
G. Evensen and P. J. van Leeuwen, "Assimilation of geosat altimeter data for the agulhas current using the ensemble Kalman filter with a quasigeostrophic model, " Mon. Wea. Rev., vol. 124, pp. 85-96, Jan. 1996. https://www.mendeley.com/research-papers/assimilation-geosat-altimeter-data-agulhas-current-using-ensemble-kalman-filter-quasigeostrophic-mod-4/
|
[36] |
P. L. Houtekamer and H. L. Mitchell, "Data assimilation using an ensemble Kalman filter technique, " Mon. Wea. Rev., vol. 126, pp. 796-811, Mar. 1998. https://www.mendeley.com/research-papers/data-assimilation-using-ensemble-kalman-filter-technique-20/
|
[37] |
J. Mandel, "Efficient implementation of the ensemble Kalman filter, " University of Colorado at Denver, Tech. Rep. UCDHSC/CCM Report No. 231, 2006.
|
[38] |
S. Lakshmivarahan and D. J. Stensrud, "Ensemble Kalman filter, " IEEE Control Syst., vol. 29, no. 3, pp. 34-46, Jun. 2009.
|
[39] |
G. Evensen, Data Assimilation:The Ensemble Kalman Filter, 2nd ed. Berlin Heidelberg:Springer, 2009.
|
[40] |
J. Mandel, L. Cobb, and J. D. Beezley, "On the convergence of the ensemble Kalman filter, " Appl. Math., vol. 56, no. 6, pp. 533-541, Dec. 2011. https://www.mendeley.com/research-papers/convergence-ensemble-kalman-filter-1/
|
[41] |
M. Montanari, S. M. Peresada, C. Rossi, and A. Tilli, "Speed sensorless control of induction motors based on a reduced-order adaptive observer, " IEEE Trans. Control Syst. Technol., vol. 15, no. 6, pp. 1049-1064, Nov. 2007. https://www.mendeley.com/research-papers/speed-sensorless-control-induction-motors-based-reducedorder-adaptive-observer-1/
|
[42] |
S. R. Bowes, A. Sevinc, and D. Holliday, "New natural observer applied to speed-sensorless dc servo and induction motors, " IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1025-1032, Oct. 2004. https://www.mendeley.com/research-papers/new-natural-observer-applied-speedsensorless-dc-servo-induction-motors/
|
[43] |
R. Marino, P. Tomei, and C. M. Verrelli, "A global tracking control for speed-sensorless induction motors, " Automatica, vol. 40, no. 6, pp. 1071-1077, Jun. 2004. http://www.mendeley.com/research/global-tracking-control-speedsensorless-induction-motors/
|
[44] |
Y. B. Wang, L. Zhou, S. A. Bortoff, A. Satake, and S. Furutani, "High gain observer for speed-sensorless motor drives:algorithm and experiments, " in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics, Banff, AB, UK, pp. 1127-1132, 2016.
|
[45] |
L. Zhou and Y. B. Wang, "Speed sensorless state estimation for induction motors:a moving horizon approach, " in Proc. American Control Conf., Boston, MA, USA, pp. 2229-2234, 2016.
|
[46] |
Q. B. Ge, T. Shao, Z. S. Duan, and C. L. Wen, "Performance analysis of the Kalman filter with mismatched noise covariances, " IEEE Trans. Automat. Control, vol. 61, no. 12, pp. 4014-4019, Dec. 2016.
|
[47] |
L. A. Scardua and J. J. da Cruz, "Complete offline tuning of the unscented kalman filter, " Automatica, vol. 80, pp. 54-61, Jun. 2017. https://www.sciencedirect.com/science/article/pii/S0005109817300171
|
[48] |
B. F. La Scala, R. R. Bitmead, and B. G. Quinn, "An extended Kalman filter frequency tracker for high-noise environments, " IEEE Trans. Signal Process., vol. 44, no. 2, pp. 431-434, Feb. 1996. https://www.mendeley.com/research-papers/extended-kalman-filter-frequency-tracker-highnoise-environments/
|
[49] |
B. Jia, M. Xin, and Y. Cheng, "Sparse Gauss-Hermite quadrature filter with application to spacecraft attitude estimation, " J. Guid. Control Dyn., vol. 34, no. 2, pp. 367-379, Mar. -Apr. 2011. http://www.mendeley.com/research/sparse-gauss-hermite-quadrature-filter-application-spacecraft-attitude-estimation/
|
[50] |
I. Arasaratnam and S. Haykin, "Cubature Kalman filters, " IEEE Trans. Automat. Control, vol. 54, no. 6, pp. 1254-1269, Jun. 2009.
|
[51] |
B. Jia, M. Xin, and Y. Cheng, "High-degree cubature Kalman filter, " Automatica, vol. 49, no. 2, pp. 510-518, Feb. 2013. http://www.mendeley.com/catalog/highdegree-cubature-kalman-filter/
|
[52] |
S. Särkkä, J. Hartikainen, L. Svensson, and F. Sandblom. On the relation between Gaussian process quadratures and sigma-point methods. arXiv: 1504. 05994, 2015.
|
[53] |
J. Park and I. W. Sandberg, "Universal approximation using radial-basis-function networks, " Neural Comput., vol. 3, no. 2, pp. 246-257, Jun. 1991. http://www.mendeley.com/catalog/universal-approximation-using-radialbasisfunction-networks/
|
[54] |
O. Straka, J. Duník, and M. Simandl, "Gaussian sum unscented Kalman filter with adaptive scaling parameters, " in Proc. 14th Int. Conf. Information Fusion, Chicago, IL, USA, pp. 1-8, 2011. https://www.mendeley.com/catalog/gaussian-sum-unscented-kalman-filter-adaptive-scaling-parameters/
|
[55] |
L. Dovera and E. Della Rossa, "Multimodal ensemble Kalman filtering using Gaussian mixture models, " Computat. Geosci., vol. 15, no. 2, pp. 307-323, Mar. 2011. https://www.mendeley.com/research-papers/multimodal-ensemble-kalman-filtering-using-gaussian-mixture-models-3/
|
[56] |
J. T. Horwood and A. B. Poore, "Adaptive Gaussian sum filters for space surveillance, " IEEE Trans. Automat. Control, vol. 56, no. 8, pp. 1777-1790, Aug. 2011. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005751637
|
[57] |
J. H. Kotecha and P. M. Djuric, "Gaussian sum particle filtering, " IEEE Trans. Signal Process., vol. 51, no. 10, pp. 2602-2612, Oct. 2003. https://www.mendeley.com/research-papers/gaussian-sum-particle-filtering/
|
[58] |
G. Terejanu, P. Singla, T. Singh, and P. D. Scott, "Adaptive Gaussian sum filter for nonlinear Bayesian estimation, " IEEE Trans. Automat. Control, vol. 56, no. 9, pp. 2151-2156, Sep. 2011. https://www.mendeley.com/research-papers/adaptive-gaussian-sum-filter-nonlinear-bayesian-estimation/
|
[59] |
N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation, " IEE Proc. F: Radar Signal Process., vol. 140, no. 2, pp. 107-113, Apr. 1993.
|
[60] |
A. Doucet and A. M. Johansen, "A tutorial on particle filtering and smoothing:fifteen years later, " in The Oxford Handbook of Nonlinear Filtering, D. Crisan and B. Rozovskiǐ, Eds. Oxford:Oxford University Press, pp. 656-704, 2011. https://www.mendeley.com/research-papers/tutorial-particle-filtering-smoothing-fiteen-years-later/
|
[61] |
M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, " IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174-188, Feb. 2002.
|
[62] |
A. Parker, "Dealing with data overload in the scientific realm, " Science and Technology Review, 4-11, 2013. [Online]. Avaliable: https: //str. llnl. gov/content/pages/january-2013/pdf/01. 13. 1. pdf
|
[63] |
D. Crisan and A. Doucet, "Convergence of sequential Monte Carlo methods, " Technical Report, University of Cambridge, 2000. https://www.mendeley.com/research-papers/convergence-sequential-monte-carlo-methods/
|
[64] |
W. Yi, M. R. Morelande, L. J. Kong, and J. Y. Yang, "A computationally efficient particle filter for multitarget tracking using an independence approximation, " IEEE Trans. Signal Process., vol. 61, no. 4, pp. 843-856, Feb. 2013. https://www.mendeley.com/research-papers/computationally-efficient-particle-filter-multitarget-tracking-using-independence-approximation/
|
[65] |
F. J. F. G. de Freitas, M. Niranjan, A. H. Gee, and A. Doucet, "Sequential monte carlo methods to train neural network models, " Neural Comput., vol. 12, no. 4, pp. 955-993, Apr. 2000. https://www.mendeley.com/research-papers/sequential-monte-carlo-methods-train-neural-network-models-4/
|
[66] |
R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan, "The unscented particle filter, " in Advances in Neural Information Processing Systems 13, Cambridge, CA, USA, pp. 584-590, 2001.
|
[67] |
L. Q. Li, H. B. Ji, and J. H. Luo, "The iterated extended Kalman particle filter, " in Proc. IEEE Int. Symp. Communications and Information Technology, vol. 2, Beijing, China, pp. 1213-1216, 2005.
|
[68] |
A. J. Chorin and X. M. Tu, "Implicit sampling for particle filters, " Proc. Natl. Acad. Sci. USA, vol. 106, no. 41, pp. 17429-17254, Oct. 2009. https://www.mendeley.com/research-papers/implicit-sampling-particle-filters/
|
[69] |
A. Chorin, M. Morzfeld, and X. M. Tu, "Implicit particle filters for data assimilation, " Commun. Appl. Math. Comput. Sci., vol. 5, no. 2, pp. 221-240, Nov. 2010. https://www.mendeley.com/research-papers/implicit-particle-filters-data-assimilation/
|
[70] |
C. V. Rao, J. B. Rawlings, and D. Q. Mayne, "Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations, " IEEE Trans. Automat. Control, vol. 48, no. 2, pp. 246-258, Feb. 2003.
|
[71] |
C. V. Rao, "Moving horizon strategies for the constrained monitoring and control of nonlinear discrete-time systems, " Ph.D. dissertation, University of Wisconsin Madison, 2000. https://www.mendeley.com/research-papers/moving-horizon-strategies-constrained-monitoring-control-nonlinear-discrete-time-systems/
|
[72] |
M. J. Tenny and J. B. Rawlings, "Efficient moving horizon estimation and nonlinear model predictive control, " in Proc. 2002 American Control Conf., vol. 6, Anchorage, AK, USA, pp. 4475-4480, 2002. https://www.mendeley.com/research-papers/efficient-moving-horizon-estimation-nonlinear-model-predictive-control/
|
[73] |
M. Diehl, H. J. Ferreau, and N. Haverbeke, "Efficient numerical methods for nonlinear mpc and moving horizon estimation, " in Nonlinear Model Predictive Control, L. Magni, D. M. Raimondo, and F. Allgöwer, Eds. Berlin Heidelberg:Springer, vol. 384, pp. 391-417, 2009. https://www.mendeley.com/research-papers/efficient-numerical-methods-nonlinear-mpc-moving-horizon-estimation/
|
[74] |
J. Ching, J. L. Beck, and K. A. Porter, "Bayesian state and parameter estimation of uncertain dynamical systems, " Probabilist. Eng. Mech., vol. 21, no. 1, pp. 81-96, Jan. 2006.
|
[75] |
H. Z. Fang, Y. B. Wang, Z. Sahinoglu, T. Wada, and S. Hara, "Adaptive estimation of state of charge for lithium-ion batteries, " in Proc. American Control Conf., Washington, DC, USA, pp. 3485-3491, 2013.
|
[76] |
H. Z. Fang, Y. B. Wang, Z. Sahinoglu, T. Wada, and S. Hara, "State of charge estimation for lithium-ion batteries: an adaptive approach, " Control Eng. Pract., vol. 25, pp. 45-54, Apr. 2014.
|
[77] |
G. Chowdhary and R. Jategaonkar, "Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter, " Aerosp. Sci. Technol., vol. 14, no. 2, pp. 106-117, Mar. 2010. https://www.mendeley.com/research-papers/aerodynamic-parameter-estimation-flight-data-applying-extended-unscented-kalman-filter/
|
[78] |
T. Chen, J. Morris, and E. Martin, "Particle filters for state and parameter estimation in batch processes, " J. Process Control, vol. 15, no. 6, pp. 665-673, Sep. 2005. https://www.mendeley.com/research-papers/particle-filters-state-parameter-estimation-batch-processes-3/
|
[79] |
E. A. Wan and A. T. Nelson, "Dual extended Kalman filter methods, " in Kalman Filtering and Neural Networks, S. Haykin, Ed. New York:John Wiley & Sons, Inc., pp. 123-173, 2001. https://www.mendeley.com/research-papers/dual-extended-kalman-filter-method/
|
[80] |
E. A. Wan, R. Van Der Merwe, and A. T. Nelson, "Dual estimation and the unscented transformation, " in Proc. 12th Int. Conf. Neural Information Processing Systems, Denver, CO, 2000, USA, pp. 666-672.
|
[81] |
M. C. VanDyke, J. L. Schwartz, and C. D. Hall, "Unscented Kalman filtering for spacecraft attitude state and parameter estimation, " in Proc. AAS/AIAA Space Flight Mechanics Conf., Maui, Hawaii, USA, 2004. https://www.mendeley.com/research-papers/unscented-kalman-filtering-spacecraft-attitude-state-parameter-estimation/
|
[82] |
H. Moradkhani, S. Sorooshian, H. V. Gupta, and P. R. Houser, "Dual state-parameter estimation of hydrological models using ensemble Kalman filter, " Adv. Water Resour., vol. 28, no. 2, pp. 135-147, Feb. 2005. https://www.mendeley.com/research-papers/dual-stateparameter-estimation-hydrological-models-using-ensemble-kalman-filter-16/
|
[83] |
J. Mendel, "White-noise estimators for seismic data processing in oil exploration, " IEEE Trans. Automat. Control, vol. 22, no. 5, pp. 694-706, Oct. 1977. https://www.mendeley.com/research-papers/whitenoise-estimators-seismic-data-processing-oil-exploration/
|
[84] |
C. S. Hsieh, "Robust two-stage Kalman filters for systems with unknown inputs, " IEEE Trans. Automat. Control, vol. 45, no. 12, pp. 2374-2378, Dec. 2000.
|
[85] |
C. S. Hsieh, "On the optimality of two-stage Kalman filtering for systems with unknown inputs, " Asian J. Control, vol. 12, no. 4, pp. 510-523, Jul. 2010. https://www.mendeley.com/research-papers/optimality-twostage-kalman-filtering-systems-unknown-inputs/
|
[86] |
L. Pina and M. A. Botto, "Simultaneous state and input estimation of hybrid systems with unknown inputs, " Automatica, vol. 42, no. 5, pp. 755-762, May 2006. https://www.mendeley.com/research-papers/simultaneous-state-input-estimation-hybrid-systems-unknown-inputs/
|
[87] |
F. Q. You, F. L. Wang, and S. P. Guan, "Hybrid estimation of state and input for linear discrete time-varying systems: a game theory approach, " Acta Automatica Sinica, vol. 34, no. 6, pp. 665-669, Jun. 2008. https://www.mendeley.com/research-papers/hybrid-estimation-state-input-linear-discrete-timevarying-systems-game-theory-approach/
|
[88] |
T. Floquet, C. Edwards, and S. K. Spurgeon, "On sliding mode observers for systems with unknown inputs, " Int. J. Adapt. Control Signal Process., vol. 21, no. 8-9, pp. 638-656, Oct. -Nov. 2007. https://www.mendeley.com/research-papers/sliding-mode-observers-systems-unknown-inputs-17/
|
[89] |
F. J. Bejarano, L. Fridman, and A. Poznyak, "Exact state estimation for linear systems with unknown inputs based on hierarchical super-twisting algorithm, " Int. J. Robust Nonlinear Control, vol. 17, no. 18, pp. 1734-1753, Dec. 2007. https://www.mendeley.com/research-papers/exact-state-estimation-linear-systems-unknown-inputs-based-hierarchical-supertwisting-algorithm/
|
[90] |
S. Gillijns and B. De Moor, "Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, " Automatica, vol. 43, no. 5, pp. 934-937, May 2007. https://www.mendeley.com/research-papers/unbiased-minimumvariance-input-state-estimation-linear-discretetime-systems/
|
[91] |
S. Gillijns and B. De Moor, "Unbiased minimum-variance input and state estimation for linear discrete-time systems, " Automatica, vol. 43, no. 1, pp. 111-116, Jan. 2007. https://www.mendeley.com/research-papers/unbiased-minimumvariance-input-state-estimation-linear-discretetime-systems/
|
[92] |
H. Z. Fang, Y. Shi, and J. Yi, "A new algorithm for simultaneous input and state estimation, " in Proc. American Control Conf., Seattle, WA, USA, pp. 2421-2426, 2008. https://www.mendeley.com/research-papers/new-algorithm-simultaneous-input-state-estimation-2/
|
[93] |
H. Z. Fang, Y. Shi, and J. Yi, "On stable simultaneous input and state estimation for discrete-time linear systems, " Int. J. Adapt. Control Signal Process., vol. 25, no. 8, pp. 671-686, Aug. 2011. https://www.mendeley.com/research-papers/stable-simultaneous-input-state-estimation-discretetime-linear-systems/
|
[94] |
H. Z. Fang and R. A. de Callafon, "On the asymptotic stability of minimum-variance unbiased input and state estimation, " Automatica, vol. 48, no. 12, pp. 3183-3186, Dec. 2012. https://www.mendeley.com/research-papers/asymptotic-stability-minimumvariance-unbiased-input-state-estimation/
|
[95] |
M. Corless and J. Tu, "State and input estimation for a class of uncertain systems, " Automatica, vol. 34, no. 6, pp. 757-764, Jun. 1998. https://www.mendeley.com/research-papers/state-input-estimation-class-uncertain-systems/
|
[96] |
Q. P. Ha and H. Trinh, "State and input simultaneous estimation for a class of nonlinear systems, " Automatica, vol. 40, no. 10, pp. 1779-1785, Oct. 2004. https://www.mendeley.com/research-papers/state-input-simultaneous-estimation-class-nonlinear-systems/
|
[97] |
H. Z. Fang, R. A. de Callafon, and J. Cortés, "Simultaneous input and state estimation for nonlinear systems with applications to flow field estimation, " Automatica, vol. 49, no. 9, pp. 2805-2812, Sep. 2013. https://www.mendeley.com/research-papers/simultaneous-input-state-estimation-nonlinear-systems-applications-flow-field-estimation-2/
|
[98] |
H. Z. Fang, R. A. de Callafon, and P. J. S. Franks, "Smoothed estimation of unknown inputs and states in dynamic systems with application to oceanic flow field reconstruction, " Int. J. Adapt. Control Signal Process., vol. 29, no. 10, pp. 1224-1242, Oct. 2015.
|
[99] |
H. Z. Fang and R. A. de Callafon, "Simultaneous input and state filtering:an ensemble approach, " in Proc. IEEE 54th Conf. Decision and Control (CDC), Osaka, Japan, pp. 437-442, 2015.
|
[100] |
H. Z. Fang, T. Srivas, R. A. de Callafon, and M. A. Haile, "Ensemble-based simultaneous input and state estimation for nonlinear dynamic systems with application to wildfire data assimilation, " Control Eng. Pract., vol. 63, pp. 104-115, Jun. 2017. https://www.mendeley.com/research-papers/ensemblebased-simultaneous-input-state-estimation-nonlinear-dynamic-systems-application-wildfire-dat/
|
[101] |
Y. Liu, Y. Peng, B. L. Wang, S. R. Yao, and Z. H. Liu, "Review on cyber-physical systems, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 27-40, Jan. 2017.
|
[102] |
X. Guan, B. Yang, C. Chen, W. Dai, and Y. Wang, "A comprehensive overview of cyber-physical systems:from perspective of feedback system, " IEEE/CAA J. Autom. Sinica, vol.3, no.1, pp. 1-14, 2016. https://www.researchgate.net/profile/Bo_Yang18/publication/301541315_A_Comprehensive_Overview_of_Cyber-Physical_Systems_From_Perspective_of_Feedback_System/links/5717a01c08ae30c3f9f16f5f.pdf?origin=publication_detail
|
[103] |
J. V. Candy, Bayesian Signal Processing:Classical, Modern and Particle Filtering Methods. New York, NY, USA:Wiley-Interscience, 2009.
|