A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 1
Jan.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Dianwei Qian, Chengdong Li, SukGyu Lee and Chao Ma, "Robust Formation Maneuvers Through Sliding Mode for Multi-agent Systems With Uncertainties," IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 342-351, Jan. 2018. doi: 10.1109/JAS.2017.7510787
Citation: Dianwei Qian, Chengdong Li, SukGyu Lee and Chao Ma, "Robust Formation Maneuvers Through Sliding Mode for Multi-agent Systems With Uncertainties," IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 342-351, Jan. 2018. doi: 10.1109/JAS.2017.7510787

Robust Formation Maneuvers Through Sliding Mode for Multi-agent Systems With Uncertainties

doi: 10.1109/JAS.2017.7510787
Funds:

This work was supported by the National Natural Science Foundation of China 60904008

This work was supported by the National Natural Science Foundation of China 61473176

the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities ZR2015JL021

More Information
  • This paper develops a robust control method for formation maneuvers of a multi-agent system. The multi-agent system is leader-follower-based, where the graph theory is utilized to describe the information exchange among the agents. The control method is exercised via sliding mode methodology where each agent is subjected to uncertainties. The technique of nonlinear disturbance observer is adopted in order to overcome the adverse effects of the uncertainties. Assuming that the uncertainties have an unknown bound, the formation stability conditions are investigated according to a given communication topology. In the sense of Lyapunov, not only the formation maneuvers of the multi-agent system have guaranteed stability, but the desired formations of the agents are also realized. Compared with other two control approaches, i.e., the basic sliding mode approach and the fuzzy sliding mode approach, some numerical results are presented to illustrate the effectiveness, performance and validity of the robust control method for formation maneuvers in the presence of uncertainties.

     

  • loading
  • [1]
    L. Cheng, Z. G. Hou, M. Tan, Y. Z. Lin, and W. J. Zhang, "Neuralnetwork-based adaptive leader-following control for multiagent systems with uncertainties, " IEEE Trans. Neural Netw. , vol. 21, no. 8, pp. 1351-1358, Aug. 2010. http://dl.acm.org/citation.cfm?id=1862021.1862035
    [2]
    L. Cheng, Y. P. Wang, W. Ren, Z. G. Hou, and M. Tan, "On convergence rate of leader-following consensus of linear multi-agent systems with communication noises, " IEEE Trans. Autom. Control, vol. 61, no. 11, pp. 3586-3592, Nov. 2016. http://arxiv.org/abs/1508.06927
    [3]
    L. Cheng, Y. P. Wang, W. Ren, Z. G. Hou, and M. Tan, "Containment control of multiagent systems with dynamic leaders based on a PIn-type approach, " IEEE Trans. Cybern., vol. 46, no. 12, pp. 3004-3017, Dec. 2016. http://www.ncbi.nlm.nih.gov/pubmed/26571546
    [4]
    W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle Cooperative Control. London, UK: Springer, 2008. http://www.springerlink.com/content/978-1-84800-015-5
    [5]
    C. L. P. Chen, G. X. Wen, Y. J. Liu, and F. Y. Wang, "Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 6, pp. 1217-1226, Jun. 2014. doi: 10.1109/TNNLS.2014.2302477
    [6]
    H. G. Zhang, T. Feng, G. H. Yang, and H. J. Liang, "Distributed cooperative optimal control for multiagent systems on directed graphs: An inverse optimal approach, " IEEE Trans. Cybern., vol. 45, no. 7, pp. 1315-1326, Jul. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25216491
    [7]
    H. Zhang, R. H. Yang, H. C. Yan, and F. W. Yang, "H consensus of event-based multi-agent systems with switching topology, " Inf. Sci., vol. 370-371, pp. 623-635, Nov. 2016. http://www.sciencedirect.com/science/article/pii/S0020025515008294
    [8]
    H. Rezaee and F. Abdollahi, "Average consensus over high-order multiagent systems, " IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 3047-3052, Nov. 2015. doi: 10.1109/TAC.2015.2408576
    [9]
    M. Biglarbegian, "A novel robust leader-following control design for mobile robots, " J. Intell. Robot. Syst., vol. 71, no. 3-4, pp. 391-402, Sep. 2013. doi: 10.1007/s10846-012-9795-1
    [10]
    J. Y. C. Chen and M. J. Barnes, "Human-agent teaming for multirobot control: A review of human factors issues, " IEEE Trans. Hum. Mach. Syst., vol. 44, no. 1, pp. 13-29, Feb. 2014. doi: 10.1109/THMS.2013.2293535
    [11]
    C. C. Hua, X. You, and X. P. Guan, "Leader-following consensus for a class of high-order nonlinear multi-agent systems, " Automatica, vol. 73, pp. 138-144, Nov. 2016. http://www.sciencedirect.com/science/article/pii/S0005109816302527
    [12]
    D. W. Qian, S. W. Tong, J. R. Guo, and S. Lee, "Leader-follower-based formation control of nonholonomic mobile robots with mismatched uncertainties via integral sliding mode, " Proc. Inst. Mech. Eng. I J. Syst. Control Eng., vol. 229, no. 6, pp. 559-569, Jul. 2015. doi: 10.1177/0959651814568365
    [13]
    D. W. Qian, S. W. Tong, and C. D. Li, "Leader-following formation control of multiple robots with uncertainties through sliding mode and nonlinear disturbance observer, " ETRI J., vol. 38, no. 5, pp. 1008-1018, Oct. 2016. doi: 10.4218/etrij.16.0116.0048/full
    [14]
    J. Dasdemir and A. Loría, "Robust formation tracking control of mobile robots via one-to-one time-varying communication, " Int. J. Control, vol. 87, no. 9, pp. 1822-1832, Mar. 2014. http://www.sciencedirect.com/science/article/pii/S0378113510000088
    [15]
    S. J. Yoo, "Formation tracker design of multiple mobile robots with wheel perturbations: Adaptive output-feedback approach, " Int. J. Syst. Sci., vol. 47, no. 15, pp. 3619-3630, Dec. 2016. doi: 10.1080/00207721.2015.1107149
    [16]
    T. P. Nascimento, A. G. S. Conceição, and A. P. Moreira, "Multi-robot nonlinear model predictive formation control: The obstacle avoidance problem, " Robotica, vol. 34, no. 3, pp. 549-567, Mar. 2016. http://www.researchgate.net/publication/266675548_Multi-Robot_nonlinear_model_predictive_formation_control_the_obstacle_avoidance_problem
    [17]
    Y. Liu and Y. M. Jia, "Robust formation control of discrete-time multiagent systems by iterative learning approach, " Int. J. Syst. Sci., vol. 46, no. 4, pp. 625-633, Apr. 2015. doi: 10.1007/s12555-012-0507-1
    [18]
    V. I. Utkin, Sliding Modes in Control and Optimization. Berlin Heidelberg, Germany: Springer, 1992. http://www.springerlink.com/content/978-3-642-84379-2
    [19]
    Y. H. Chang, C. W. Chang, C. L. Chen, and C. W. Tao, "Fuzzy sliding-mode formation control for multirobot systems: Design and implementation, " IEEE Trans. Syst. Man Cybern. B Cybern., vol. 42, no. 2, pp. 444-457, Apr. 2012. http://www.ncbi.nlm.nih.gov/pubmed/22010151
    [20]
    Y. Y. Dai, Y. Kim, S. Wee, D. Lee, and S. Lee, "Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control, " ISA Trans., vol. 60, pp. 321-332, Jan. 2016. http://www.ncbi.nlm.nih.gov/pubmed/26704719
    [21]
    L. J. Dong, S. C. Chai, B. H. Zhang, and S. K. Nguang, "Sliding mode control for multi-agent systems under a time-varying topology, " Int. J. Syst. Sci., 2016, vol. 47, no. 9, pp. 2193-2200, Sep. 2016. http://dl.acm.org/citation.cfm?id=2903600.2903618
    [22]
    A. M. Zou, K. D. Kumar, and Z. G. Hou, "Distributed consensus control for multi-agent systems using terminal sliding mode and Chebyshev neural networks, " Int. J. Robust Nonlinear Control, vol. 23, no. 3, pp. 334-357, Feb. 2013. doi: 10.1002/rnc.1829/abstract
    [23]
    D. Zhao, T. Zou, S. Li, and Q. Zhu, "Adaptive backstepping sliding mode control for leader-follower multi-agent systems, " IET Control Theory Appl., vol. 6, no. 8, pp. 1109-1117, May 2012. http://www.ams.org/mathscinet-getitem?mr=2985188
    [24]
    Y. H. Chang, C. Y. Yang, W. S. Chan, H. W. Lin, and C. W. Chang, "Adaptive fuzzy sliding-mode formation controller design for multirobot dynamic systems, " Int. J. Fuzzy Syst., vol. 16, no. 1, pp. 121-131, Mar. 2014. http://www.researchgate.net/publication/286794416_Adaptive_fuzzy_sliding-mode_formation_controller_design_for_multi-robot_dynamic_systems
    [25]
    W. H. Chen, J. Yang, L. Guo, and S. H. Li, "Disturbance-observerbased control and related methods-an overview, " IEEE Trans. Industr. Electron., vol. 63, no. 2, pp. 1083-1095, Feb. 2016. doi: 10.1109/TIE.2015.2478397
    [26]
    B. Xiao, S. Yin, and O. Kaynak, "Tracking control of robotic manipulators with uncertain kinematics and dynamics, " IEEE Trans. Industr. Electron., vol. 63, no. 10, pp. 6439-6449, Oct. 2016. doi: 10.1109/tie.2016.2569068
    [27]
    T. Du, L. Guo, and J. Yang, "A fast initial alignment for SINS based on disturbance observer and Kalman filter, " Trans. Inst. Meas. Control, vol. 38, no. 10, pp. 1261-1269, Oct. 2016. doi: 10.1177/0142331216649019

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (788) PDF downloads(144) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return