IEEE/CAA Journal of Automatica Sinica
Citation: | Zhiling Cai and William Zhu, "Feature Selection for Multi-label Classification Using Neighborhood Preservation," IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 320-330, Jan. 2018. doi: 10.1109/JAS.2017.7510781 |
[1] |
M. R. Boutell, J. B. Luo, X. P. Shen, and C. M. Brown, "Learning multi-label scene classification, " Pattern Recognit., vol. 37, no. 9, pp. 1757-1771, Sep. 2004. http://www.sciencedirect.com/science/article/pii/S0031320304001074
|
[2] |
M. L. Zhang and Z. H. Zhou, "A review on multi-label learning algorithms, " IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819-1837, Aug. 2014. http://ieeexplore.ieee.org/document/6471714/
|
[3] |
R. E. Schapire and Y. Singer, "Boostexter:a boosting-based system for text categorization, " Mach. Learn., vol. 39, no. 2-3, pp. 135-168, May 2000. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1666
|
[4] |
M. L. Zhang and L. Wu, "Lift: Multi-label learning with label-specific features, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 1, 107-120, Jan. 2015. http://www.ncbi.nlm.nih.gov/pubmed/26353212
|
[5] |
Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya, "Hierarchical multi-label prediction of gene function, " Bioinformatics, vol. 22, no. 7, pp. 830-836, Apr. 2006. http://www.ncbi.nlm.nih.gov/pubmed/16410319
|
[6] |
M. L. Zhang and Z. H. Zhou, "Multilabel neural networks with applications to functional genomics and text categorization, " IEEE Trans. Knowl. Data Eng., vol. 18, no. 10, pp. 1338-1351, Oct. 2006. http://ieeexplore.ieee.org/document/1683770/
|
[7] |
W. Zhu and F. Y. Wang, "Reduction and axiomization of covering generalized rough sets, " Inf. Sci., vol. 152, pp. 217-230, Jun. 2003. http://www.sciencedirect.com/science/article/pii/S0020025503000562
|
[8] |
W. Zhu, "Topological approaches to covering rough sets, " Inf. Sci., vol. 177, no. 6, pp. 1499-1508, Mar. 2007. http://dl.acm.org/citation.cfm?id=1223851
|
[9] |
W. Zhu, "Relationship between generalized rough sets based on binary relation and covering, " Inf. Sci., vol. 179, no. 3, pp. 210-225, Jan. 2009. http://www.sciencedirect.com/science/article/pii/S0020025508003769
|
[10] |
W. Zhu, "Relationship among basic concepts in covering-based rough sets, " Inf. Sci., vol. 179, no. 14, pp. 2478-2486, Jun. 2009. http://www.sciencedirect.com/science/article/pii/S0020025509000929
|
[11] |
F. Y. Wang, "Control 5. 0: from Newton to Merton in Popper's cybersocial-physical spaces, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 233-234, Jul. 2016. http://ieeexplore.ieee.org/document/7508796/
|
[12] |
F. Y. Wang, X. Wang, L. X. Li, and L. Li, "Steps toward parallel intelligence, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 345-348, Oct. 2016. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZDHB201604001.htm
|
[13] |
F. Y. Wang, J. J. Zhang, X. H. Zheng, X. Wang, Y. Yuan, X. X. Dai, J. Zhang, and L. Q. Yang, "Where does Alphago go: from Church-Turing thesis to Alphago thesis and beyond, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 113-120, Apr. 2016. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZDHB201602001.htm
|
[14] |
Y. Zhang and Z. H. Zhou, "Multilabel dimensionality reduction via dependence maximization, " ACM Trans. Knowl. Discov. Data, vol. 4, no. 3, Article ID: 14, Oct. 2010. http://dl.acm.org/citation.cfm?id=1839495
|
[15] |
K. Fukunaga, Introduction to Statistical Pattern Recognition. San Diego, CA, USA:Academic Press, 2013.
|
[16] |
I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, USA: Springer, 2002.
|
[17] |
K. Yu, S. P. Yu, and V. Tresp, "Multi-label informed latent semantic indexing, " in Proc. 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, 2005, pp. 258-265. http://dl.acm.org/citation.cfm?id=1076080
|
[18] |
H. Wold, "Estimation of principal components and related models by iterative least squares, " in Multivariate Analysis, P. R. Krishnajah, Ed. New York, USA: Academic Press, 1966, pp. 350-352. http://www.ams.org/mathscinet-getitem?mr=220397
|
[19] |
X. J. Chang, F. P. Nie, Y. Yang, and H. Huang, "A convex formulation for semi-supervised multi-label feature selection, " in Proc. 28th AAAI Conference on Artificial Intelligence, Québec City, Québec, Canada, 2014, pp. 1171-1177. http://dl.acm.org/citation.cfm?id=2894055
|
[20] |
X. N. Kong and P. S. Yu, "GMLC:a multi-label feature selection framework for graph classification, " Knowl. Inf. Syst., vol. 31, no. 2, pp. 281-305, May 2012. doi: 10.1007/s10115-011-0407-3
|
[21] |
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, "Feature selection via dependence maximization, " J. Mach. Learn. Res., vol. 13, no. 1, pp. 1393-1434, Jan. 2012. http://dl.acm.org/citation.cfm?id=2343691
|
[22] |
Z. Zhao, X. F. He, D. Cai, L. J. Zhang, W. Ng, and Y. T. Zhuang, "Graph regularized feature selection with data reconstruction, " IEEE Trans. Knowl. Data Eng., vol. 28, no. 3, pp. 689-700, Mar. 2016. http://ieeexplore.ieee.org/document/7303939
|
[23] |
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining multi-label data, " in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. Boston, MA, USA: Springer, 2009, pp. 667-685. doi: 10.1007/978-0-387-09823-4_34
|
[24] |
A. Chinnaswamy and R. Srinivasan, "Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data, " in Innovations in Bio-Inspired Computing and Applications, V. Snášel, A. Abraham, P. Krómer, M. Pant, and A. Muda, Eds. Cham, Germany: Springer, 2016, pp. 229-239. http://www.springerlink.com/content/fulltext.pdf?id=doi:10.1007/978-3-319-28031-8_20
|
[25] |
O. Gharroudi, H. Elghazel, and A. Aussem, "A comparison of multilabel feature selection methods using the random forest paradigm, " in Advances in Artificial Intelligence, M. Sokolova and P. van Beek, Eds. Cham, Germany: Springer, 2014, pp. 95-106. doi: 10.1007/978-3-319-06483-3_9
|
[26] |
M. L. Zhang, J. M. Peña, and V. Robles, "Feature selection for multi-label naive bayes classification, " Inf. Sci., vol. 179, no. 19, pp. 3218-3229, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0020025509002552
|
[27] |
Q. Q. Gu, Z. H. Li, and J. W. Han, "Correlated multi-label feature selection, " in Proc. 20th ACM International Conference on Information and Knowledge Management, Glasgow, Scotland, UK, 2011, pp. 1087-1096. http://dl.acm.org/citation.cfm?id=2063734
|
[28] |
F. P. Nie, H. Huang, X. Cai, and C. Ding, "Efficient and robust feature selection via ell2, 1-norms minimization, " in Proc. 23rd International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2010, pp. 1813-1821.
|
[29] |
L. J. Zhang, Q. H. Hu, J. Duan, and X. X. Wang, "Multi-label feature selection with fuzzy rough sets, " in Rough Sets and Knowledge Technology, D. Miao, W. Pedrycz, D. Ślȩzak, G. Peters, Q. Hu, and R. Wang, Eds. Cham, Germany: Springer, 2014, pp. 121-128. doi: 10.1007/978-3-319-11740-9_12
|
[30] |
S. W. Ji and J. P. Ye, "Linear dimensionality reduction for multi-label classification, " in Proc. 21st International Jont Conference on Artifical Intelligence, Pasadena, California, USA, 2009, pp. 1077-1082. http://dl.acm.org/citation.cfm?id=1661617
|
[31] |
Y. M. Yang and J. O. Pedersen, "A comparative study on feature selection in text categorization, " in Proc. 14th International Conference on Machine Learning, San Francisco, CA, USA, 1997, pp. 412-420. http://dl.acm.org/citation.cfm?id=657137
|
[32] |
D. G. Kong, C. Ding, H. Huang, and H. F. Zhao, "Multi-label reliefF and F-statistic feature selections for image annotation, " in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012, pp. 2352-2359. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6247947
|
[33] |
N. Spolaôr, E. A. Cherman, M. C. Monard, and H. D. Lee, "A comparison of multi-label feature selection methods using the problem transformation approach, " Electron. Notes Theor. Comput. Sci., vol. 292, pp. 135-151, Mar. 2013. http://www.sciencedirect.com/science/article/pii/S1571066113000121
|
[34] |
K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas, "Multilabel classification of music into emotions, " in International Society for Music Information Retrieval, Eds. Philadelphia, Pennsylvania USA: MITP, 2008, pp. 325-330. https://www.mendeley.com/research-papers/multilabel-classification-music-emotions/
|
[35] |
J. Read, "A pruned problem transformation method for multi-label classification, " in Proc. 2008 New Zealand Computer Science Research Student Conference (NZCSRS 2008), Eds. Christchurch, New Zealand, 2008, pp. 143-150. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.3998
|
[36] |
S. Diplaris, G. Tsoumakas, P. A. Mitkas, and I. Vlahavas, "Protein classification with multiple algorithms, " in Advances in Informatics, P. Bozanis and E. N. Houstis, Eds. Berlin, Heidelberg, Germany: Springer, 2005, pp. 448-456. http://dl.acm.org/citation.cfm?id=2098508
|
[37] |
W. Z. Chen, J. Yan, B. Y. Zhang, Z. Chen, and Q. Yang, "Document transformation for multi-label feature selection in text categorization, " in 7th IEEE International Conference on Data Mining, Omaha, NE, USA, 2007, pp. 451-456. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4470272
|
[38] |
G. Doquire and M. Verleysen, "Feature selection for multi-label classification problems, " in Advances in Computational Intelligence, J. Cabestany, I. Rojas, and G. Joya, Eds. Berlin, Heidelberg, Germany: Springer, 2011, pp. 9-16. http://dl.acm.org/citation.cfm?id=2023255
|
[39] |
G. Doquire and M. Verleysen, "Mutual information-based feature selection for multilabel classification, " Neurocomputing, vol. 122, pp. 148-155, Dec. 2013. http://www.sciencedirect.com/science/article/pii/S0925231213006656
|
[40] |
J. Lee and D. W. Kim, "Feature selection for multi-label classification using multivariate mutual information, " Pattern Recognit. Lett., vol. 34, no. 3, pp. 349-357, Feb. 2013. http://dl.acm.org/citation.cfm?id=2423077
|
[41] |
J. Lee and D. W. Kim, "Fast multi-label feature selection based on information-theoretic feature ranking, " Pattern Recognit., vol. 48, no. 9, pp. 2761-2771, Sep. 2015. http://www.sciencedirect.com/science/article/pii/S0031320315001338
|
[42] |
Z. Zhao, L. Wang, H. Liu, and J. P. Ye, "On similarity preserving feature selection, " IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013. http://ieeexplore.ieee.org/document/6051436/
|
[43] |
C. Xu, T. L. Liu, D. C. Tao, and C. Xu, "Local rademacher complexity for multi-label learning, " IEEE Trans. Image Process., vol. 25, no. 3, pp. 1495-1507, Mar. 2016. http://www.ncbi.nlm.nih.gov/pubmed/26863660
|
[44] |
S. M. Tabatabaei, S. Dick, and W. Xu, "Toward non-intrusive load monitoring via multi-label classification, " IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 26-40, Jan. 2017. http://ieeexplore.ieee.org/document/7498597/
|
[45] |
S. Godbole and S. Sarawagi, "Discriminative methods for multi-labeled classification, " in Advances in Knowledge Discovery and Data Mining, H. Dai, R. Srikant, and C. Zhang, Eds. Berlin, Heidelberg, Germany: Springer, 2004, pp. 22-30. http://www.springerlink.com/content/maa4ag38jd3pwrc0
|
[46] |
M. L. Zhang and Z. H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning, " Pattern Recognit., vol. 40, no. 7, pp. 2038-2048, Jul. 2007. http://www.sciencedirect.com/science/article/pii/S0031320307000027
|
[47] |
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Random k-labelsets for multilabel classification, " IEEE Trans. Knowl. Data Eng., vol. 23, no. 7, pp. 1079-1089, Jul. 2011. http://ieeexplore.ieee.org/document/5567103/
|
[48] |
G. Tsoumakas and I. Katakis, "Multi-label classification: an overview, " Int. J. Data Warehous. Min., vol. 3, no. 3, Article ID: 1, Jul. 2007. http://econpapers.repec.org/article/iggjdwm00/v_3a3_3ay_3a2007_3ai_3a3_3ap_3a1-13.htm
|
[49] |
A. Elisseeff and J. Weston, "A kernel method for multi-labelled classification, " in Proc. 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, British Columbia, Canada, 2001, pp. 681-687. http://dl.acm.org/citation.cfm?id=2980628&preflayout=tabs
|
[50] |
N. Ueda and K. Saito, "Parametric mixture models for multi-labeled text, " in Proc. 15th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 2002, pp. 737-744. http://dl.acm.org/citation.cfm?id=2968710
|
[51] |
S. H. Zhu, X. Ji, W. Xu, and Y. H. Gong, "Multi-labelled classification using maximum entropy method, " in Proc. 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, 2005, pp. 274-281. http://dl.acm.org/citation.cfm?id=1076082
|
[52] |
P. Hou, X. Geng, and M. L. Zhang, "Multi-label manifold learning, " in Proc. 30th AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, 2016, pp. 1680-1686. http://dl.acm.org/citation.cfm?id=3016134
|
[53] |
X. F. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection, " in Proc. 18th International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2005, pp. 507-514. http://dl.acm.org/citation.cfm?id=2976312
|
[54] |
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. New York, USA: John Wiley & Sons, 2001.
|
[55] |
K. Kira and L. A. Rendell, "A practical approach to feature selection, " in Proc. 9th International Workshop on Machine Learning, San Francisco, CA, USA, 1992, pp. 249-256. http://dl.acm.org/citation.cfm?id=142034
|
[56] |
G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. London, UK:Cambridge University Press, 1952.
|
[57] |
S. Dumais, J. Platt, D. Heckerman, and M. Sahami, "Inductive learning algorithms and representations for text categorization, " in Proc. 7th International Conference on Information and Knowledge Management, Bethesda, Maryland, USA, 1998, pp. 148-155. http://en.cnki.com.cn/article_en/cjfdtotal-sjsj200604042.htm
|
[58] |
J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification, " Mach. Learn., vol. 85, no. 3, pp. 333-359, Dec. 2011. doi: 10.1007/s10994-011-5256-5
|
[59] |
Y. J. Lin, Q. H. Hu, J. H. Liu, and J. Duan, "Multi-label feature selection based on max-dependency and min-redundancy, " Neurocomputing, vol. 168, pp. 92-103, Nov. 2015. http://www.sciencedirect.com/science/article/pii/S0925231215008309
|