IEEE/CAA Journal of Automatica Sinica
Citation: | Xuesong Chen and Xin Chen, "An Iterative Method for Optimal Feedback Control and Generalized HJB Equation," IEEE/CAA J. Autom. Sinica, vol. 5, no. 5, pp. 999-1006, Sept. 2018. doi: 10.1109/JAS.2017.7510706 |
[1] |
D. E. Kirk, Optimal Control Theory: An Introduction. Mineola, USA: Courier Corporation, 2012.
|
[2] |
F. L. Lewis and V. L. Syrmos, Optimal Control. New York, USA: Wiley, 1995.
|
[3] |
R. Bellman, Dynamic Programming. New Jersey, USA: Princeton University Press, 1957.
|
[4] |
D. Kleinman, "On an iterative technique for riccati equation computations, " IEEE Trans. Autom. Contr., vol. 13, no. 1, pp. 114-115, Feb. 1968. http://xueshu.baidu.com/s?wd=paperuri%3A%28c172df92b76abf7a3551f8ab95408337%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fci.nii.ac.jp%2Fnaid%2F30019918845&ie=utf-8&sc_us=16210463245255859084
|
[5] |
F. Y. Wang, H. G. Zhang, and D. R. Liu, "Adaptive dynamic programming: An introduction, " IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39-47, May 2009. http://xueshu.baidu.com/s?wd=paperuri%3A%282a885ce7daacb3621170ec72c98d3cf9%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Ficp.jsp%3Farnumber%3D4840325&ie=utf-8&sc_us=17790335501086901414
|
[6] |
F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, "Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers, " IEEE Control Syst., vol. 32, no. 6, pp. 76-105, Dec. 2012. http://xueshu.baidu.com/s?wd=paperuri%3A%2860ee797c5b81e82150cf13d045f5fc09%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Ficp.jsp%3Farnumber%3D6315769&ie=utf-8&sc_us=15413527564144328925
|
[7] |
W. Zhang, W. X. Liu, X. Wang, L. M. Liu, and F. Ferrese, "Online optimal generation control based on constrained distributed gradient algorithm, " IEEE Trans. Power Syst., vol. 30, no. 1, pp. 35-45, Jan. 2015. http://xueshu.baidu.com/s?wd=paperuri%3A%28d8e857a156c4bc17f4164e996d00b13a%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdx.doi.org%2F10.1109%2FTPWRS.2014.2319315&ie=utf-8&sc_us=4468568846486416817
|
[8] |
N. Sakamoto and A. J. van der Schaft, "Analytical approximation methods for the stabilizing solution of the Hamilton-Jacobi equation, " IEEE Trans. Autom. Control, vol. 53, no. 10, pp. 2335-2350, Nov. 2008. http://www.mendeley.com/research/analytical-approximation-methods-stabilizing-solution-hamiltonjacobi-equation/
|
[9] |
T. Bian, Y. Jiang, and Z. P. Jiang, "Adaptive dynamic programming and optimal control of nonlinear nonaffine systems, " Automatica, vol. 50, no. 10, pp. 2624-2632, Oct. 2014. http://xueshu.baidu.com/s?wd=paperuri%3A%287c5a4b93543a6cceb05ac88bb1e68464%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdialnet.unirioja.es%2Fservlet%2Farticulo%3Fcodigo%3D4854670&ie=utf-8&sc_us=3034413140015552710
|
[10] |
C. O. Aguilar and A. J. Krener, "Numerical solutions to the Bellman equation of optimal control, " J. Optim. Theory Appl., vol. 160, no. 2, pp. 527-552, Feb. 2014. doi: 10.1007/s10957-013-0403-8
|
[11] |
S. Cacace, E. Cristiani, M. Falcone, and A. Picarelli, "A patchy dynamic programming scheme for a class of Hamilton-Jacobi-Bellman equations, " SIAM J. Sci. Comput., vol. 34, no. 5, pp. A2625-A2649, Oct. 2012. http://xueshu.baidu.com/s?wd=paperuri%3A%286e34c72862da9ed0180ea341f0816b0c%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F2011arXiv1109.3577C&ie=utf-8&sc_us=9863127530291330464
|
[12] |
N. Govindarajan, C. C. de Visser, and K. Krishnakumar, "A sparse collocation method for solving time-dependent HJB equations using multivariate B-splines, " Automatica, vol. 50, no. 9, pp. 2234-2244, Sep. 2014. http://xueshu.baidu.com/s?wd=paperuri%3A%28232ae8ead0425f554db5acf7747afd31%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdialnet.unirioja.es%2Fservlet%2Farticulo%3Fcodigo%3D4830522&ie=utf-8&sc_us=2303783704440044212
|
[13] |
J. Markman and I. N. Katz, "An iterative algorithm for solving Hamilton-Jacobi type equations, " SIAM J. Sci. Comput., vol. 22, no. 1, pp. 312-329, Jul. 2000. doi: 10.1137/S1064827598344315
|
[14] |
I. Smears and E. Süli, "Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients, "SIAM J. Numer. Anal., vol. 52, no. 2, pp. 993-1016, Apr. 2014. http://eprints.maths.ox.ac.uk/1671
|
[15] |
R. W. Beard, G. N. Saridis, and J. T. Wen, "Approximate solutions to the time-invariant Hamilton-Jacobi-Bellman equation, " J. Optim. Theory Appl., vol. 96, no. 3, pp. 589-626, Mar. 1998. http://xueshu.baidu.com/s?wd=paperuri%3A%28e806b8acd4f6c5306a9c2870839fa064%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fci.nii.ac.jp%2Fnaid%2F80010226858&ie=utf-8&sc_us=15790908467176106295
|
[16] |
R. W. Beard, G. N. Saridis, and J. T. Wen, "Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation, " Automatica, vol. 33, no. 12, pp. 2159-2177, Dec. 1997. http://xueshu.baidu.com/s?wd=paperuri%3A%281e50ce49db952defceb5de4d82886749%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D280068%26amp%3Bpreflayout%3Dflat&ie=utf-8&sc_us=11738833470501958577
|
[17] |
G. N. Saridis and C. S. G. Lee, "An approximation theory of optimal control for trainable manipulators, " IEEE Trans. Syst. Man Cybern. vol. 9, no. 3, pp. 152-159, Mar. 1979. http://xueshu.baidu.com/s?wd=paperuri%3A%28fafa925f04afc7b2d4167eec6f3a33b4%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fci.nii.ac.jp%2Fnaid%2F80013924674&ie=utf-8&sc_us=1501191005870337592
|
[18] |
Q. Gong, W. Kang, and I. M. Ross, "A pseudospectral method for the optimal control of constrained feedback linearizable systems, " IEEE Trans. Autom. Control, vol. 51, no. 7, pp. 1115-1129, Jul. 2006. http://www.mendeley.com/catalog/pseudospectral-method-optimal-control-constrained-feedback-linearizable-systems/
|