IEEE/CAA Journal of Automatica Sinica
Citation: | M. D. S. Aliyu, "An Iterative Relaxation Approach to the Solution of the Hamilton-Jacobi-Bellman-Isaacs Equation in Nonlinear Optimal Control," IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 360-366, Jan. 2018. doi: 10.1109/JAS.2017.7510682 |
[1] |
M. Athans and P. L. Falb, Optimal Control: An Introduction to the Theory and its Applications. New York: Dover Publishers, 2006. http://ci.nii.ac.jp/ncid/BA03468181
|
[2] |
D. E. Kirk, Optimal Control Theory. Englewood Cliffs: Prentice Hall, 1970. doi: 10.1007/978-3-540-29678-2_4256
|
[3] |
R. Abraham and J. E. Marsden, Foundations of Mechanics. Reading, MA, USA: Addison Wesley, 1978. doi: 10.1088/0951-7715/15/4/316/meta
|
[4] |
T. Basar and P. Bernhard, H∞ Optimal Control and Related Minimax Design, Boston: Birkhauser, 1991.
|
[5] |
M. D. S. Aliyu, Nonlinear H∞ Control, Hamiltonian Systems and Hamilton-Jacobi Equations. Boca Raton, FL. USA: CRC Press, Taylor and Francis, 2011.
|
[6] |
V. Barbu and G. Da Prata, Hamilton-Jacobi Equations in Hilbert Spaces. London: Pitman Advanced Publishing Program, 1983.
|
[7] |
Y. Feng, B. D. O. Anderson, and M. Rotkowitz, "A game theoretic algorithm to compute local stabilizing solutions of HJBI equations in nonlinear H∞ control, " Automatica, vol. 45, no. 4, pp. 881-888, Apr. 2009. http://www.ams.org/mathscinet-getitem?mr=2535347
|
[8] |
M. D. S. Aliyu, "An Approach for solving the Hamilton-Jacobi-Isaacs equation (HJIE) in nonlinear H∞ control, " Automatica, vol. 39, no. 5, pp. 877-884, May 2003. http://dl.acm.org/citation.cfm?id=2239328
|
[9] |
M. D. S. Aliyu, "A transformation approach for solving the hamiltonjacobi-bellman equation in H2 deterministic and stochastic optimal control of affine nonlinear Systems, " Automatica, vol. 39, no. 7, pp. 1243-1249, Jul. 2003. http://www.sciencedirect.com/science/article/pii/S0005109803000803
|
[10] |
M. D. S. Aliyu and L. Smolinsky, "A parametrization approach for solving the Hamilton-Jacobi equation and application to the A2 Toda lattice, " Nonlinear Dyn. Syst. Theory, vol. 5, no. 4, pp. 323-344. 2005. https://www.sciencedirect.com/science/article/pii/S1570865998800094
|
[11] |
M. D. S. Aliyu, "Adaptive solution of Hamilton-Jacobi-Isaacs equation and Practical H∞ stabilization of nonlinear systems, " in Proc. IEEE Int. Conf. Control Applications, Anchorage, Alaska, USA, 2000, pp. 343-348. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=897448
|
[12] |
A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, "Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof, " IEEE Trans. Syst., Man Cybern., vol. 38, no. 4, pp. 943-949, Aug. 2008. http://www.ncbi.nlm.nih.gov/pubmed/18632382
|
[13] |
S. H. Jr. Benton, The Hamilton-Jacobi Equation: A Global Approach. New York: Academic Press, 1977. https://catalogue.nla.gov.au/Record/656384
|
[14] |
S. T. Glad, "Robustness of nonlinear state feedback-a survey, " Automatica, vol. 23, no. 4, pp. 425-435, Jul. 1987. http://dl.acm.org/citation.cfm?id=29286
|
[15] |
D. L. Lukes, "Optimal regulation of nonlinear dynamical systems, " SIAM J. Control, vol. 7, no. 1, pp. 75-100, Feb. 1969. doi: 10.1137%2F0307007
|
[16] |
P. Tsiotras, M. Corless, and M. A. Rotea, "An L2 disturbance attenuation solution to the nonlinear benchmark problem, " Int. J. Robust Nonlinear Control, vol. 8, no. 4-5, pp. 311-330, Dec. 1998. http://www.ams.org/mathscinet-getitem?mr=1611574
|
[17] |
M. J. Yazdanpanah, K. Khorasani, and R. V. Patel, "Uncertainty compensation for a flexible-link manipulator using nonlinear H∞ control, " Int. J. Control, vol. 69, no. 6, pp. 753-771, Apr. 1998. http://www.ams.org/mathscinet-getitem?mr=1691654
|
[18] |
R. W. Beard, G. N. Saridis, and J. T. Wen, "Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation, " Automatica, vol. 33, No. 12, pp. 2159-2177, Dec. 1997. http://dl.acm.org/citation.cfm?id=280068&preflayout=flat
|
[19] |
R. W. Beard and T. W. Mclain, "Successive Galerkin approximation algorithms for nonlinear optimal and robust control, " Int. J. Control, vol. 71, no. 5, pp. 717-743, Nov. 1998. doi: 10.1080/002071798221542
|
[20] |
A. Isidori and W. Kang, " H∞ control via measurement feedback for general nonlinear systems, " IEEE Trans. Automat. Control, vol. 40, no. 3, pp. 466-472, Mar. 1995. http://www.ams.org/mathscinet-getitem?mr=1319245
|
[21] |
A. Isidori and W. Lin, "Global L2-Gain design for a class of nonlinear systems, " Syst. Control Lett. , vol. 34, no. 5, pp. 295-302, Jul. 1998. http://dl.acm.org/citation.cfm?id=294951.294960
|
[22] |
J. Huang, "An algorithm to solve the discrete HJI equation arising in the L2 gain optimization problem, " Int. J. Control, vol. 72, No. 1, pp. 49-57, Jan. 1999. http://www.ams.org/mathscinet-getitem?mr=1670722
|
[23] |
H. Guillard, S. Monaco, and D. Normand-Cyrot, "Approximated solutions to nonlinear discrete-time H∞ Control, " IEEE Trans. Automat. Control, vol. 40, no. 12, pp. 2143-2148, Dec. 1995. doi: 10.1109/9.478342
|
[24] |
M. Abu-Khalaf, F. L. Lewis, and L. Huang, "Policy iterations on the Hamilton-Jacobi-Isaacs equation for H∞ state feedback control with input saturation, " IEEE Trans. Automat. Control, vol. 51, no. 12, pp. 1989-1993, Dec. 2006 http://www.ams.org/mathscinet-getitem?mr=2289992
|
[25] |
M. Abu-Khalaf and F. L. Lewis, "Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach, " Automatica, vol. 41, no. 5, pp. 779-791, May 2005. http://dl.acm.org/citation.cfm?id=2239385
|
[26] |
T. Ohtsuka, "Solutions to the Hamilton-Jacobi equation with algebraic gradients, " IEEE Trans. Automat. Control, vol. 56, no. 8, pp. 1874-1885, Aug. 2011. doi: 10.1109/TAC.2010.2097130
|
[27] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications: Ⅰ: FixedPoint Theorems. New York: Springer-Verlag, 1986. http://www.springer.com/us/book/9780387909141
|
[28] |
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. London: Academic Press, 1970. http://www.researchgate.net/publication/220690833_Iterative_Solution_of_Non-Linear_Equation_in_Several_Variables
|
[29] |
H. K. Khalil, Nonlinear Systems, 3 rd Edition, Prentice Hall, Upper Saddle River, NJ, USA, 2002.
|
[30] |
S. Bittanti, A. J. Laub, and J. Willems, The Riccati Equation. Germany: Springer-Verlag, 1991.
|
[31] |
K. M. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. New Jersey: Prentice Hall, 1996. http://www.sciencedirect.com/science/article/pii/S2405896316307522
|
[32] |
G. G. L. Meyer and H. J. Payne, "An iterative method of solution of the algebraic Riccati equation, " IEEE Trans. Automat. Control, vol. 17, no. 4, pp. 550-551, Aug. 1972. doi: 10.1109/TAC.1972.1100059
|
[33] |
D. L. Kleinman, "On an Iterative technique for Riccati equation Computations, " IEEE Trans. Automat. Control, vol. 13, no. 1, pp. 114-115, Feb. 1968. doi: 10.1109/tac.1968.1098829
|
[34] |
K. Vit, "Iterative solution of the Riccati equation, " IEEE Trans. Automat. Control, vol. 17, no. 2, pp. 258-259, Apr. 1972. doi: 10.1109/tac.1972.1099945
|
[35] |
J. M. Saniuk and I. B. Rhodes, "A matrix inequality associated with bounds on Solutions of algebraic Riccati and Lyapunov equations, " IEEE Trans. Automat. Control, vol. 32, no. 8, pp. 739-740, Aug. 1987. doi: 10.1109/TAC.1987.1104700
|
[36] |
J. M. A. Scherpen and A. J. Van der Schaft, "Normalized coprime factorizations and balancing for unstable nonlinear systems, " Int. J. Control, vol. 60, no. 6, pp. 1193-1222, 1994. doi: 10.1080/00207179408921517
|