IEEE/CAA Journal of Automatica Sinica
Citation: | Vahid Badri and Mohammad Saleh Tavazoei, "On Time-Constant Robust Tuning of Fractional Order [Proportional Derivative] Controllers," IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1179-1186, Sept. 2019. doi: 10.1109/JAS.2017.7510667 |
[1] |
D. Cafagna, "Fractional calculus: a mathematical tool from the past for present engineers, " IEEE Industrial Electronics Magazine, pp. 35-40, 2007.
|
[2] |
C. Ma, Y. Hori, "Fractional-order control: theory and applications in motion control, " IEEE Industrial Electronics Magazine, vol. 1, no. 4, pp. 6-16, 2007. doi: 10.1109/MIE.2007.909703
|
[3] |
M. Cugnet, J. Sabatier, S. Laruelle, S. Grugeon, B. Sahut, A. Oustaloup, J.M. Tarascon, "On lead-acid-battery resistance and cranking-capability estimation, " IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 909-917, 2010. doi: 10.1109/TIE.2009.2036643
|
[4] |
M. Branciforte, A. Meli, G. Muscato, D. Porto, "ANN and non-integer order modeling of ABS solenoid valves, " IEEE Transactions on Control Systems Technology, vol. 19, no. 3, pp. 628-635, 2011. doi: 10.1109/TCST.2010.2049999
|
[5] |
A. Narang, S.L. Shah, T. Chen: "Continuous-time model identification of fractional-order models with time delays, " IET Control Theory & Applications, vol. 5, no. 7, pp. 900-912, 2010.
|
[6] |
M. R. Rapaic, A. Pisano, "Variable-order fractional operators for adaptive order and parameter estimation, " IEEE Transactions on Automatic Control, vol. 59, no. 3, pp. 798-803, 2014. doi: 10.1109/TAC.2013.2278136
|
[7] |
M. S. Tavazoei, "From traditional to fractional PI control: a key for generalization, " IEEE Industrial Electronics Magazine, vol. 6, no. 3, pp. 41-51, 2012. doi: 10.1109/MIE.2012.2207818
|
[8] |
M. O. Efe, "Fractional order systems in industrial automation-a survey, " IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 582-591, 2011. doi: 10.1109/TII.2011.2166775
|
[9] |
Y. Luo, T. Zhang, B. Lee, V. Kang, Y. Q. Chen, "Fractional-order proportional derivative controller synthesis and implementation for hard-disk-drive servo system, " IEEE Transactions on Control Systems Technology, vol. 22, no. 1, pp. 281-289, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=324f0da88edac4578d502230f52ecd0d
|
[10] |
M. S. Tavazoei, M. Haeri, S. Jafari, S. Bolouki, M. Siami, "Some applications of fractional calculus in suppression of chaotic oscillations, " IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 4094-4101, 2008. doi: 10.1109/TIE.2008.925774
|
[11] |
Z. X. Zou, K. Zhou, Z. Wang, M. Cheng, "Frequency-Adaptive fractional-order repetitive control of shunt active power filters, " IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1659-1668, 2015. doi: 10.1109/TIE.2014.2363442
|
[12] |
C. Yeroglu, N. Tan, "Note on fractional-order proportional-integral-differential controller design, " IET Control Theory & Applications, vol. 5, no. 17, pp. 1978-1989, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dca22b013498d739cbde7dff1f22de9d
|
[13] |
M. S. Tavazoei, M. Tavakoli-Kakhki, "Compensation by fractional-order phase-lead/lag compensators, " IET Control Theory & Applications, vol. 8, no. 5, pp. 319-329, 2014.
|
[14] |
M. O. Efe, "Fractional fuzzy adaptive sliding-mode control of a 2-DoF direct-drive robot arm, " IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 6, pp. 1561-1570, 2008. doi: 10.1109/TSMCB.2008.928227
|
[15] |
A. Dumlu, K. Erenturk, "Trajectory tracking control for a 3-DoF parallel manipulator using fractional-order PIλDμ control, " IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3417-3426, 2014. doi: 10.1109/TIE.2013.2278964
|
[16] |
K. Erenturk, "Fractional-order and active disturbance rejection control of nonlinear two-mass drive system, " IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3806-3813, 2013. doi: 10.1109/TIE.2012.2207660
|
[17] |
Y. Jin, Y. Q. Chen, D. Xue, "Time-Constant robust analysis of a fractional order[proportional derivative] controller, " IET Control Theory & Applications, vol. 5, no. 1, pp. 164-172, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=163dd44620202a6f919ffa9393544e7a
|
[18] |
H. Li, Y. Luo, Y. Q. Chen, "A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments, " IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 516-520, 2010. doi: 10.1109/TCST.2009.2019120
|
[19] |
Y. Luo, Y. Q. Chen, C.Y. Wang, Y.G. Pi, "Tuning fractional order proportional integral controllers for fractional order systems, " Journal of Process Control, vol. 20, no. 7, pp. 823-831, 2010. doi: 10.1016/j.jprocont.2010.04.011
|
[20] |
Y. Luo, Y. Q. Chen, "Fractional order[proportional derivative] controller for a class of fractional order systems, " Automatica, vol. 45, pp. 2446-2450, 2009. doi: 10.1016/j.automatica.2009.06.022
|
[21] |
V. Badri, M. S. Tavazoei, "On tuning fractional order [proportional--derivative] controllers for a class of fractional order systems, " Automatica, vol. 49, no. 7, pp. 2297-2301, 2013. doi: 10.1016/j.automatica.2013.04.026
|
[22] |
V. Badri, M. S. Tavazoei, "On tuning FO[PI] controllers for FOPDT processes, " Electronics Letters, vol. 49, no. 21, pp. 1326-1328, 2013. doi: 10.1049/el.2013.2457
|
[23] |
V. Badri, M. S. Tavazoei, "Fractional order control of thermal systems: achievability of frequency-domain requirements, " Nonlinear Dynamics, vol. 8, no. 4, pp. 1773-1783, 2014.
|
[24] |
V. Badri, M. S. Tavazoei, "Achievable performance region for a fractional order proportional and derivative motion controller, " IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7171-7180, 2015. doi: 10.1109/TIE.2015.2448691
|
[25] |
V. Badri, M. S. Tavazoei, "Some analytical results on tuning fractional-order[proportional-integral] controllers for fractional-order systems, " IEEE Transactions on Control Systems Technology, vol. 24, no. 3, pp. 1059-1066, 2016. doi: 10.1109/TCST.2015.2462739
|
[26] |
V. Badri, M. S. Tavazoei, "Simultaneous compensation of the gain, phase, and phase-slope, " Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 12, pp. 121002, 2016. doi: 10.1115/1.4034073
|
[27] |
N. Sayyaf, M. S. Tavazoei, "Frequency Data Based Procedure to Adjust Gain and Phase Margins and Guarantee the Uniqueness of Crossover Frequencies, " IEEE Transactions on Industrial Electronics, DOI: 10.1109/TIE.2019.2905814, 2019.
|
[28] |
A. A. Dastjerdi, B. M. Vinagre, Y. Q. Chen, S. H. HosseinNia, "Linear fractional order controllers; A survey in the frequency domain, " Annual Reviews in Control, vol. 47, pp. 51-70, 2019.
|
[29] |
A. A. Dastjerdi, N. Saikumar, S. H. HosseinNia, "Tuning guidelines for fractional order PID controllers: Rules of thumb, " Mechatronics, vol. 56, pp. 26-36, 2018. doi: 10.1016/j.mechatronics.2018.10.004
|
[30] |
V. Feliu-Batlle, F. J. Castillo-García, "On the robust control of stable minimum phase plants with large uncertainty in a time constant. A fractional-order control approach, " Automatica, vol. 50, no. 1, pp. 218-224, 2014. doi: 10.1016/j.automatica.2013.10.002
|
[31] |
H. Anton, Calculus: A New Horizon, 6th ed. New York: Wiley, 1999.
|
[32] |
Quanser. (2015). "Industrial mechatronic drives unit."[Online]. Available: http://www.quanser.com/products/imdu
|
[33] |
Y. Q. Chen (2008). "Impulse response invariant discretization of fractional order low-pass filters."[Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/21365-impulse-response-invariant-discretization-of-fractional-order-low-pass-filters
|
[34] |
Y. Wei, Q. Gao, C. Peng, Y. Wang, "A rational approximate method to fractional order systems, " International Journal of Control, Automation and Systems, vol. 12, no. 6, pp. 1180-1186, 2014. doi: 10.1007/s12555-013-0109-6
|
[35] |
Y. Wei, W. T. Peter, B. Du, Y. Wang, "An innovative fixed-pole numerical approximation for fractional order systems, " ISA Transactions, vol. 62, pp. 94-102, 2016. doi: 10.1016/j.isatra.2016.01.010
|