IEEE/CAA Journal of Automatica Sinica
Citation: | Wei He, Zhijun Li and C. L. Philip Chen, "A Survey of Human-centered Intelligent Robots: Issues and Challenges," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 602-609, Oct. 2017. doi: 10.1109/JAS.2017.7510604 |
[1] |
J. Heinzmann and A. Zelinsky, "A safe-control paradigm for humanrobot interaction, " J. Intell. Rob. Syst. , vol. 25, no. 4, pp. 295-310, Aug 1999. doi: 10.1023/A%3A1008135313919
|
[2] |
C. G. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, and E. Burdet, "Human-like adaptation of force and impedance in stable and unstable interactions, " IEEE Trans. Rob. , vol. 27, no. 5, pp. 918-930, Oct. 2011. http://dl.acm.org/citation.cfm?id=2335607
|
[3] |
O. Khatib, O. Brock, K. C. Chang, D. Ruspini, L. Sentis, and S. Viji, "Human-centered robotics and interactive haptic simulation, " Int. J. Rob. Res. , vol. 23, no. 2, pp. 167-178, Feb. 2004. doi: 10.1007/3-540-36460-9_16
|
[4] |
M. Zinn, B. Roth, O. Khatib, and J. K. Salisbury, "A new actuation approach for human friendly robot design, " Int. J. Rob. Res. , vol. 23, no. 4-5, pp. 379-398, Apr. 2004. doi: 10.1007/3-540-36268-1_9
|
[5] |
Z. Z. Bien and D. Stefanov, Advances in Rehabilitation Robotics:Human-friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Berlin Heidelberg, Germany:Springer, 2004.
|
[6] |
N. Kawarazaki, I. Hoya, K. Nishihara, and T. Yoshidome, "7 cooperative welfare robot system using hand gesture instructions, " in Advances in Rehabilitation Robotics, Z. Z. Bien and D. Stefanov, Eds. Berlin Heidelberg, Germany: Springer, 2004, pp. 143-153.
|
[7] |
R. A. Russell, "Survey of robotic applications for odor-sensing technology, " Int. J. Rob. Res. , vol. 20, no. 2, pp. 144-162, Feb. 2001. http://imamat.oxfordjournals.org/external-ref?access_num=10.1177/02783640122067318&link_type=DOI
|
[8] |
J. Huang, T. Supaongprapa, I. Terakura, F. M. Wang, N. Ohnishi, and N. Sugie, "A model-based sound localization system and its application to robot navigation, " Rob. Auton. Syst. , vol. 27, no. 4, pp. 199-209, Jun. 1999. http://www.sciencedirect.com/science/article/pii/S0921889099000020
|
[9] |
O. Wijk and H. I. Christensen, "Localization and navigation of a mobile robot using natural point landmarks extracted from sonar data, " Rob. Auton. Syst. , vol. 31, no. 1-2, pp. 31-42, Apr. 2000. http://www.sciencedirect.com/science/article/pii/S0921889099000858
|
[10] |
K. D. Harris and M. Recce, "Absolute localization for a mobile robot using place cells, " Rob. Auton. Syst. , vol. 22, no. 3-4, pp. 393-406, Dec. 1997. http://www.sciencedirect.com/science/article/pii/S092188909700050X
|
[11] |
P. I. Corke and M. C. Good, "Dynamic effects in visual closed-loop systems, " IEEE Trans. Rob. Automat. , vol. 12, no. 5, pp. 671-683, Oct. 1996. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=538973
|
[12] |
P. E. Trahanias, S. Velissaris, and S. C. Orphanoudakis, "Visual recognition of workspace landmarks for topological navigation, " Rob. Auton. Syst. , vol. 7, no. 2, pp. 143-158, Sep. 1999. http://dl.acm.org/citation.cfm?id=591530
|
[13] |
Z. J. Li, Z. C. Huang, W. He, and C. Y. Su, "Adaptive impedance control for an upper limb robotic exoskeleton using biological signals, " IEEE Trans. Ind. Electron. , vol. 64, no. 2, pp. 1664-1674, Feb. 2017. http://ieeexplore.ieee.org/document/7426396/
|
[14] |
Z. J. Li, H. Z. Xiao, C. G. Yang, and Y. W. Zhao, "Model predictive control of nonholonomic chained systems using general projection neural networks optimization, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 45, no. 10, pp. 1313-1321, Oct. 2015. http://ieeexplore.ieee.org/document/7042779/
|
[15] |
Z. J. Li, S. T. Xiao, S. S. Ge, and H. Su, "Constrained multilegged robot system modeling and fuzzy control with uncertain kinematics and dynamics incorporating foot force optimization, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 1, pp. 1-15, Jan. 2016. http://ieeexplore.ieee.org/document/7101859/
|
[16] |
N. Hogan, "Impedance control:An approach to manipulation:Part Ⅰ-Ⅱ-Ⅲ, " J. Dyn. Syst. Measur. Control, vol. 107, pp. 1-24, 1985. doi: 10.1115/1.3140702
|
[17] |
S. Jezernik, G. Colombo, and M. Morari, "Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-dof robotic orthosis, " IEEE Trans. Rob. Automat. , vol. 20, no. 3, pp. 574-582, Jun. 2004. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1303704
|
[18] |
P. W. Xiong, H. D. Xiao, A. G. Song, L. Y. Hu, X. P. Liu, and L. H. Feng, "A target grabbing strategy for telerobot based on improved stiffness display device, " IEEE/CAA J. Automat. Sin., 2017, doi: 10.1109/JAS.2016.7510256.
|
[19] |
S. P. Lum, S. L. Lehman, and D. J. Reinkensmeyer, "The bimanual lifting rehabilitator: An adaptive machine for therapy of stroke patients, " IEEE Trans. Rehab. Eng. , vol. 3, no. 2, pp. 166-174, Jun. 1995. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=392371
|
[20] |
N. Shoval, M. P. Kwan, K. H. Reinau, and H. Harder, "The shoemaker's son always goes barefoot: Implementations of GPS and other tracking technologies for geographic research, " Geoforum, vol. 51, pp. 1-5, Jan. 2014. http://www.narcis.nl/publication/RecordID/oai%3Adspace.library.uu.nl%3A1874%2F288977/coll/person/id/1/Language/nl
|
[21] |
C. H. Choi and H. J. Joo, "Motion recognition technology based remote Taekwondo Poomsae evaluation system, " Multim. Tools Appl. , vol. 75, no. 21, pp. 13135-13148, Nov. 2016. doi: 10.1007/s11042-015-2901-1
|
[22] |
D. Y. Wu and J. Gan, "Assistant haptic interaction technology for blind internet user, " J. Eng. Design, vol. 17, no. 2, pp. 128-133, 155, Apr. 2010. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCSJ201002014.htm
|
[23] |
L. Deng and X. Li, "Machine learning paradigms for speech recognition: An overview, " IEEE Trans. Audio Speech Lang. Process. , vol. 21, no. 5, pp. 1060-1089, May 2013. http://ieeexplore.ieee.org/document/6423821/
|
[24] |
J. Y. Long, Y. Q. Li, H. T. Wang, T. Y. Yu, J. H. Pan, and F. Li, "A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair, " IEEE Trans. Neural Syst. Rehab. Eng. , vol. 20, no. 5, pp. 720-729, Sep. 2012. http://ieeexplore.ieee.org/document/6213127/
|
[25] |
L. Spalzzi, "A survey on case-based planning, " Artif. Intell. Rev. , vol. 16, no. 1, pp. 3-36, Sep. 2001. doi: 10.1023/A%3A1011081305027
|
[26] |
T. Kaupp, A. Makarenko, and H. Durrant-Whyte, "Human-robot communication for collaborative decision making-a probabilistic approach, " Rob. Auton. Syst. , vol. 58, no. 5, pp. 444-456, May 2010. http://dl.acm.org/citation.cfm?id=1755588
|
[27] |
S. S. Ge and Y. J. Cui, "New potential functions for mobile robot path planning, " IEEE Trans. Rob. Autom. , vol. 16, no. 5, pp. 615-620, Oct. 2000. http://ieeexplore.ieee.org/document/880813/
|
[28] |
P. Trautman, J. Ma, R. M. Murray, and A. Krause, "Robot navigation in dense human crowds: Statistical models and experimental studies of human-robot cooperation, " Int. J. Rob. Res. , vol. 34, no. 3, pp. 335-356, Mar. 2015. http://dl.acm.org/citation.cfm?id=2744158
|
[29] |
Y. Golan, S. Edelman, A. Shapiro, and E. Rimon, "Online robot navigation using continuously updated artificial temperature gradients, " IEEE Rob. Automat. Lett. , vol. 2, no. 3, pp. 1280-1287, Jul. 2017. http://ieeexplore.ieee.org/document/7845581
|
[30] |
E. Galceran and M. Carreras, "A survey on coverage path planning for robotics, " Rob. Auton. Syst. , vol. 61, no. 12, pp. 1258-1276, Dec. 2013. http://dl.acm.org/citation.cfm?id=2542724
|
[31] |
T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, "Human-aware robot navigation: A survey, " Rob. Auton. Syst. , vol. 61, no. 12, pp. 1726-1743, Dec. 2013. http://dl.acm.org/citation.cfm?id=2542686.2542722
|
[32] |
E. Trulls, A. Corominas Murtra, J. Pérez-Ibarz, G. Ferrer, D. Vasquez, J. M. Mirats-Tur, and A. Sanfeliu, "Autonomous navigation for mobile service robots in urban pedestrian environments, " J. Field Rob. , vol. 28, no. 3, pp. 329-354, May-Jun. 2011. http://dl.acm.org/citation.cfm?id=1967384
|
[33] |
W. Chung, S. Kim, M. Choi, J. Choi, H. Kim, C. B. Moon, and J. B. Song, "Safe navigation of a mobile robot considering visibility of environment, " IEEE Trans. Ind. Electron. , vol. 56, no. 10, pp. 3941-3950, Oct. 2009. http://ieeexplore.ieee.org/document/5109666/
|
[34] |
H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, "Socially compliant mobile robot navigation via inverse reinforcement learning, " Int. J. Rob. Res. , vol. 35, no. 11, pp. 1289-1307, Sep. 2016. http://dl.acm.org/citation.cfm?id=3014318
|
[35] |
A. V. Savkin and C. Wang, "Seeking a path through the crowd: Robot navigation in unknown dynamic environments with moving obstacles based on an integrated environment representation, " Rob. Auton. Syst. , vol. 62, no. 10, pp. 1568-1580, Oct. 2014. http://www.sciencedirect.com/science/article/pii/S0921889014000955
|
[36] |
B. Lau, C. Sprunk, and W. Burgard, "Efficient grid-based spatial representations for robot navigation in dynamic environments, " Rob. Auton. Syst. , vol. 61, no. 10, pp. 1116-1130, Oct. 2013. http://www.sciencedirect.com/science/article/pii/S092188901200142X
|
[37] |
J. Wang, S. Schroedl, K. Mezger, R. Ortloff, A. Joos, and T. Passegger, "Lane keeping based on location technology, " IEEE Trans. Intell. Transport. Syst. , vol. 6, no. 3, pp. 351-356, Sep. 2005. http://ieeexplore.ieee.org/document/1504794/
|
[38] |
D. Nistér, O. Naroditsky, and J. Bergen, "Visual odometry for ground vehicle applications, " J. Field Rob. , vol. 23, no. 1, pp. 3-20, Jan. 2006. http://www.mendeley.com/catalog/visual-odometry-ground-vehicle-applications/
|
[39] |
B. Kim and K. Yi, "Probabilistic and holistic prediction of vehicle states using sensor fusion for application to integrated vehicle safety systems, " IEEE Trans. Intell. Transport. Syst. , vol. 15, no. 5, pp. 2178-2190, Oct. 2014. http://ieeexplore.ieee.org/document/6815699/
|
[40] |
H. L. Yu, K. Meier, M. Argyle, and R. W. Beard, "Cooperative path planning for target tracking in urban environments using unmanned air and ground vehicles, " IEEE/ASME Trans. Mech. , vol. 20, no. 2, pp. 541-552, Apr. 2015. http://ieeexplore.ieee.org/document/6732930/
|
[41] |
Y. F. Cai, Z. M. Tang, Y. H. Ding, and B. Qian, "Theory and application of multi-robot service-oriented architecture, " IEEE/CAA J. Automat. Sin. , vol. 3, no. 1, pp. 15-25, Jan. 2016. http://ieeexplore.ieee.org/document/7373758/
|
[42] |
A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, "Optimality and robustness in multi-robot path planning with temporal logic constraints, " Int. J. Rob. Res. , vol. 32, no. 8, pp. 889-911, Jul. 2013. http://dl.acm.org/citation.cfm?id=2502923.2502929
|
[43] |
K. G. Jolly, R. S. Kumar, and R. Vijayakumar, "A bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits, " Rob. Auton. Syst. , vol. 57, no. 1, pp. 23-33, Jan. 2009. http://dl.acm.org/citation.cfm?id=1464537.1465437&coll=DL&dl=GUIDE&CFID=559276766&CFTOKEN=52010871
|
[44] |
S. Kloder and S. Hutchinson, "Path planning for permutation-invariant multirobot formations, " IEEE Trans. Rob. , vol. 22, no. 4, pp. 650-665, Aug. 2006. http://ieeexplore.ieee.org/document/1668251/
|
[45] |
R. X. Cui, Y. Li, and W. S. Yan, "Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 7, pp. 993-1004, Jul. 2016. http://ieeexplore.ieee.org/document/7345594/
|
[46] |
U. A. Syed, F. Kunwar, and M. Iqbal, "Guided autowave pulse coupled neural network (GAPCNN) based real time path planning and an obstacle avoidance scheme for mobile robots, " Rob. Auton. Syst. , vol. 62, no. 4, pp. 474-486, Apr. 2014. http://dl.acm.org/citation.cfm?id=2592401
|
[47] |
H. B. Duan and L. Z. Huang, "Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning, " Neurocomputing, vol. 125, pp. 166-171, Feb. 2014. http://dl.acm.org/citation.cfm?id=2562656
|
[48] |
Y. Zhang, D. W. Gong, and J. H. Zhang, "Robot path planning in uncertain environment using multi-objective particle swarm optimization, " Neurocomputing, vol. 103, pp. 172-185, Mar. 2013. http://www.sciencedirect.com/science/article/pii/S0925231212007722
|
[49] |
H. W. Mo and L. F. Xu, "Research of biogeography particle swarm optimization for robot path planning, " Neurocomputing, vol. 148, pp. 91-99, Jan. 2015. http://www.sciencedirect.com/science/article/pii/S0925231214009217
|
[50] |
D. Q. Zhu, H. Huang, and S. X. Yang, "Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace, " IEEE Trans. Cybern. , vol. 43, no. 2, pp. 504-514, Apr. 2013. http://ieeexplore.ieee.org/document/6287602/
|
[51] |
V. Roberge, M. Tarbouchi, and G. Labonté, "Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning, " IEEE Trans. Ind. Inform. , vol. 9, no. 1, pp. 132-141, Feb. 2013. http://ieeexplore.ieee.org/document/6198334/
|
[52] |
H. Qu, S. X. Yang, A. R. Willms, and Z. Yi, "Real-time robot path planning based on a modified pulse-coupled neural network model, " IEEE Trans. Neural Networks, vol. 20, no. 11, pp. 1724-1739, Nov. 2009. http://ieeexplore.ieee.org/document/5256181/
|
[53] |
J. D. Seelig and V. Jayaraman, "Neural dynamics for landmark orientation and angular path integration, " Nature, vol. 521, no. 7551, pp. 186-191, May 2015. http://pubmedcentralcanada.ca/pmcc/articles/PMC4704792/
|
[54] |
E. Burdet, R. Osu, D. W. Franklin, T. Milner, and M. Kawato, "The central nervous system stabilizes unstable dynamics by learning optimal impedance, " Nature, vol. 414, no. 6862, pp. 446-449, Nov. 2001. http://www.ncbi.nlm.nih.gov/pubmed/11719805
|
[55] |
W. He, H. F. Huang, and S. Z. S. Ge, "Adaptive neural network control of a robotic manipulator with time-varying output constraints, " IEEE Trans. on Cybern., vol. 47, no. 10, pp. 3136-3147, 2017. doi: 10.1109/TCYB.2017.2711961
|
[56] |
W. He, B. Huang, Y. T. Dong, Z. J. Li, and C. -Y. Su, "Adaptive Neural Network Control for Robotic Manipulators with Unknown Deadzone, " IEEE Trans. on Cybern. , 2017, DOI: 10.1109/TCYB.2017.2748418,tobepublished.
|
[57] |
W. He, W. L. Ge, Y. C. Li, Y. J. Liu, C. G. Yang, and C. Y. Sun, "Model identification and control design for a humanoid robot, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 47, no. 1, pp. 45-57, Jan. 2017. http://ieeexplore.ieee.org/document/7469783/
|
[58] |
W. He, Y. H. Chen, and Z. Yin, "Adaptive neural network control of an uncertain robot with full-state constraints, " IEEE Trans. Cybern. , vol. 46, no. 3, pp. 620-629, Mar. 2016. http://ieeexplore.ieee.org/document/7078921/
|
[59] |
W. He, S. S. Ge, Y. N. Li, E. Chew, and Y. S. Ng, "Neural network control of a rehabilitation robot by state and output feedback, " J. Intell. Rob. Syst. , vol. 80, no. 1, pp. 15-31, Oct. 2015. doi: 10.1007/s10846-014-0150-6
|
[60] |
Z. J. Li, S. S. Z. Ge, and A. G. Ming, "Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators, " IEEE Trans. Syst. Man Cybern. , vol. 37, no. 3, pp. 607-16, Jun. 2007. http://dl.acm.org/citation.cfm?id=2226666
|
[61] |
C. G. Yang, Z. J. Li, and J. Li, "Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models, " IEEE Trans. Cybern. , vol. 43, no. 1, pp. 24-36, Feb. 2013. http://europepmc.org/abstract/med/22695357
|
[62] |
Z. J. Li, C. Y. Su, L. Y. Wang, Z. T. Chen, and T. Y. Chai, "Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation, " IEEE Trans. Ind. Electron. , vol. 62, no. 9, pp. 5763-5775, Sep. 2015. http://ieeexplore.ieee.org/document/7128705/
|
[63] |
Z. Li, S. S. Ge, M. Adams, and W. S. Wijesoma, "Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators, " Automatica, vol. 44, no. 3, pp. 776-784, Mar. 2008. http://www.sciencedirect.com/science/article/pii/S0005109807003627
|
[64] |
Z. J. Li, S. S. Ge, and S. B. Liu, "Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks, " IEEE Trans. Neural Networks Learn. Syst. , vol. 25, no. 8, pp. 1460-1473, Aug. 2014. http://ieeexplore.ieee.org/document/6687263/
|
[65] |
C. G. Yang, Z. J. Li, R. X. Cui, and B. G. Xu, "Neural network-based motion control of an underactuated wheeled inverted pendulum model, " IEEE Trans. Neural Networks Learn. Syst. , vol. 25, no. 11, pp. 2004-2016, Nov. 2014. http://ieeexplore.ieee.org/document/6762995/
|
[66] |
C. G. Yang, Y. M. Jiang, Z. J. Li, W. He, and C. Y. Su, "Neural control of bimanual robots with guaranteed global stability and motion precision, " IEEE Trans. Ind. Inform. , vol. 13, no. 3, pp. 1162-1171, Jun. 2017. http://ieeexplore.ieee.org/document/7574390/
|
[67] |
W. He, A. O. David, Z. Yin, and C. Y. Sun, "Neural network control of a robotic manipulator with input deadzone and output constraint, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 6, pp. 759-770, Jun. 2016. http://ieeexplore.ieee.org/document/7222457/
|
[68] |
W. He and Y. T. Dong, "Adaptive fuzzy neural network control for a constrained robot using impedance learning, " IEEE Trans. Neural Networks Learn. Syst. , 2017, doi: 10.1109/TNNLS.2017.2665581.tobepublished
|
[69] |
Z. J. Li, Q. B. Ge, W. J. Ye, and P. J. Yuan, "Dynamic balance optimization and control of quadruped robot systems with flexible joints, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 10, pp. 1338-1351, Oct. 2016. http://ieeexplore.ieee.org/document/7360224/
|
[70] |
Z. J. Li, C. Y. Su, G. L. Li, and H. Su, "Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs, " IEEE Trans. Fuzzy Syst. , vol. 23, no. 3, pp. 555-566, Jun. 2015. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6798669
|
[71] |
W. He, Y. T. Dong, and C. Y. Sun, "Adaptive neural impedance control of a robotic manipulator with input saturation, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 3, pp. 334-344, Mar. 2016. http://ieeexplore.ieee.org/document/7113913/
|
[72] |
B. Babenko, M. H. Yang, and S. Belongie, "Robust object tracking with online multiple instance learning, " IEEE Trans. Patt. Anal. Mach. Intell. , vol. 33, no. 8, pp. 1619-1632, Aug. 2011. http://ieeexplore.ieee.org/abstract/document/5674053/
|
[73] |
D. Wang, H. C. Lu, and M. H. Yang, "Online object tracking with sparse prototypes, " IEEE Trans. Image Procesl. , vol. 22, no. 1, pp. 314-325, Jan. 2013. http://ieeexplore.ieee.org/document/6212358
|
[74] |
A. Chander, A. Chatterjee, and P. Siarry, "A new social and momentum component adaptive PSO algorithm for image segmentation, " Expert Syst. Appl. , vol. 38, no. 5, pp. 4998-5004, May 2011. http://www.sciencedirect.com/science/article/pii/S0957417410011085
|
[75] |
J. Z. Wang, J. Li, and G. Wiederhold, "Simplicity: Semantics-sensitive integrated matching for picture libraries, " IEEE Trans. Patt. Anal. Mach. Intell. , vol. 23, no. 9, pp. 947-963, Sep. 2001. doi: 10.1109/34.955109
|
[76] |
X. Z. Bai, Y. Zhang, F. G. Zhou, and B. D. Xue, "Quadtree-based multi-focus image fusion using a weighted focus-measure, " Inform. Fusion, vol. 22, pp. 105-118, Mar. 2015. http://www.sciencedirect.com/science/article/pii/S1566253514000669
|
[77] |
A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard, and Y. Laurillau, "EMG feature evaluation for improving myoelectric pattern recognition robustness, " Expert Syst. Appl. , vol. 40, no. 12, pp. 4832-4840, Sep. 2013. http://www.sciencedirect.com/science/article/pii/S0957417413001395
|
[78] |
A. J. Young, L. H. Smith, E. J. Rouse, and L. J. Hargrove, "Classification of simultaneous movements using surface EMG pattern recognition, " IEEE Trans. Biomed. Eng. , vol. 60, no. 5, pp. 1250-1258, May 2013. http://ieeexplore.ieee.org/document/6377275/
|
[79] |
Y. H. Yin, Y. J. Fan, and L. D. Xu, "EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton, " IEEE Trans. Neural Syst. Rehab. Eng. , vol. 16, no. 4, pp. 542-549, Jul. 2012. http://ieeexplore.ieee.org/document/6126040/
|
[80] |
J. U. Chu, I. Moon, and M. S. Mun, "A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand, " IEEE Trans. Biomed. Eng. , vol. 53, no. 11, pp. 2232-2239, Nov. 2006. http://ieeexplore.ieee.org/document/1710164/
|
[81] |
J. U. Chu, I. Moon, Y. J. Lee, S. K. Kim, and M. S. Mun, "A supervised feature-projection-based real-time emg pattern recognition for multifunction myoelectric hand control, " IEEE/ASME Trans. Mech, vol. 12, no. 3, pp. 282-290, Jun. 2007. http://ieeexplore.ieee.org/document/4244373/
|
[82] |
A. B. Ajiboye and R. F. Weir, "A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control, " IEEE Trans. Neural Syst. Rehab. Eng. , vol. 13, no. 3, pp. 280-291, Sep. 2005. http://ieeexplore.ieee.org/document/1506815/
|
[83] |
E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, "A human aware mobile robot motion planner, " IEEE Trans. Rob. , vol. 23, no. 5, pp. 874-883, Oct. 2007. http://ieeexplore.ieee.org/document/4339546/
|
[84] |
K. Morioka, J. H. Lee, and H. Hashimoto, "Human-following mobile robot in a distributed intelligent sensor network, " IEEE Trans. Ind. Electron. , vol. 51, no. 1, pp. 229-237, Feb. 2004. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1265801
|
[85] |
W. Chung, H. Kim, Y. Yoo, C. B. Moon, and J. Park, "The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder, " IEEE Trans. Ind. Electron. , vol. 59, no. 8, pp. 3156-3166, Aug. 2012. http://ieeexplore.ieee.org/document/6032092/
|
[86] |
F. Ficuciello, L. Villani, and B. Siciliano, "Variable impedance control of redundant manipulators for intuitive human-robot physical interaction, " IEEE Trans. Rob. , vol. 31, no. 4, pp. 850-863, Aug. 2015. http://ieeexplore.ieee.org/document/7110619/
|
[87] |
K. Wakita, J. Huang, P. Di, K. Sekiyama, and T. Fukuda, "Human-walking-intention-based motion control of an omnidirectional-type cane robot, " IEEE/ASME Trans. Mech, vol. 18, no. 1, pp. 285-296, Feb. 2013. http://ieeexplore.ieee.org/document/6054057/
|
[88] |
S. Lim, D. Son, J. Kim, Y. B. Lee, J. K. Song, S. Choi, D. J. Lee, J. H. Kim, M. Lee, T. Hyeon, and D. H. Kim, "Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures, " Adv. Funct. Mater. , vol. 25, no. 3, pp. 375-383, Jan. 2015. http://www.chemie.de/fachpublikationen/741632/transparent-and-stretchable-interactive-human-machine-interface-based-on-patterned-graphene-heterostructures.html
|
[89] |
S. Waldherr, R. Romero, and S. Thrun, "A gesture based interface for human-robot interaction, " Rob. Auton. Syst. , vol. 9, no. 2, pp. 151-173, Sep. 2000. doi: 10.1023/A%3A1008918401478
|
[90] |
J. W. Crandall, M. A. Goodrich, D. R. Olsen, and C. W. Nielsen, "Validating human-robot interaction schemes in multitasking environments, " IEEE Trans. Syst. Man Cybern. , vol. 35, no. 4, pp. 438-449, Jul. 2005. http://ieeexplore.ieee.org/document/1453692/
|
[91] |
J. G. Trafton, N. L. Cassimatis, M. D. Bugajska, D. P. Brock, F. E. Mintz, and A. C. Schultz, "Enabling effective human-robot interaction using perspective-taking in robots, " IEEE Trans. Syst. Man Cybern. , vol. 35, no. 4, pp. 460-470, Jul. 2005. http://ieeexplore.ieee.org/document/1453694/
|