A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 3
Jul.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Wenying Zhang, Huaguang Zhang, Jinhai Liu, Kai Li, Yang Dongsheng and Tian Hui, "Weather Prediction With Multiclass Support Vector Machines in the Fault Detection of Photovoltaic System," IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 520-525, July 2017. doi: 10.1109/JAS.2017.7510562
Citation: Wenying Zhang, Huaguang Zhang, Jinhai Liu, Kai Li, Yang Dongsheng and Tian Hui, "Weather Prediction With Multiclass Support Vector Machines in the Fault Detection of Photovoltaic System," IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 520-525, July 2017. doi: 10.1109/JAS.2017.7510562

Weather Prediction With Multiclass Support Vector Machines in the Fault Detection of Photovoltaic System

doi: 10.1109/JAS.2017.7510562
Funds:

the National Natural Science Foundation of China 61433004

the National Natural Science Foundation of China 61473069

IAPI Fundamental Research Funds 2013ZCX14

More Information
  • Since the efficiency of photovoltaic (PV) power is closely related to the weather, many PV enterprises install weather instruments to monitor the working state of the PV power system. With the development of the soft measurement technology, the instrumental method seems obsolete and involves high cost. This paper proposes a novel method for predicting the types of weather based on the PV power data and partial meteorological data. By this method, the weather types are deduced by data analysis, instead of weather instrument. A better fault detection is obtained by using the support vector machines (SVM) and comparing the predicted and the actual weather. The model of the weather prediction is established by a direct SVM for training multiclass predictors. Although SVM is suitable for classification, the classified results depend on the type of the kernel, the parameters of the kernel, and the soft margin coefficient, which are difficult to choose. In this paper, these parameters are optimized by particle swarm optimization (PSO) algorithm in anticipation of good prediction results can be achieved. Prediction results show that this method is feasible and effective.

     

  • loading
  • [1]
    M. A. Rezaei, K. J. Lee, and A. Q. Huang, "A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications, " IEEE Trans. Power Electr. , vol. 31, no. 1, pp. 318-327, Jan. 2016. http://ieeexplore.ieee.org/document/7055319/
    [2]
    J. P. Conroy, A. C. Elmore, and M. Crow, "Capture zone comparison for photovoltaic microgrid-powered pump and treat remediation, " J. Hazard. Toxic Radioact. Waste, vol. 18, no. 3, pp. 04014009, Jul. 2014. doi: 10.1061/%28ASCE%29HZ.2153-5515.0000208
    [3]
    J. S. Cashmore, M. Apolloni, A. Braga, O. Caglar, V. Cervetto, Y. Fenner, S. Goldbach-Aschemann, C. Goury, J. E. Hotzel, T. Iwahashi, J. Kalas, M. Kitamura, M. Klindworth, M. Kupich, G. F. Leu, J. Lin, M. H. Lindic, P. A. Losio, T. Mates, D. Matsunaga, B. Mereu, X. V. Nguyen, I. Psimoulis, S. Ristau, T. Roschek, A. Salabas, E. L. Salabas, and I. Sinicco, "Improved conversion efficiencies of thin-film silicon tandem photovoltaic modules, " Solar Energy Mater. Solar Cells, vol. 144, pp. 84-95, Jan. 2016. http://www.sciencedirect.com/science/article/pii/S092702481500416X
    [4]
    Y. F. Dong, W. L. Wang, and D. X. Han, "American millions of solar roofs initiative, " Solar Energy, no. 1, pp. 29, Jan. 1999.
    [5]
    H. G. Zhang, Z. S. Wang, and D. R. Liu, "A comprehensive review of stability analysis of continuous-time recurrent neural networks, " IEEE Trans. Neur. Net. Lear. Syst. , vol. 25, no. 7, pp. 1229-1262, Jul. 2014. http://ieeexplore.ieee.org/document/6814892/
    [6]
    H. G. Zhang, C. B. Qing, and Y. H. Luo, "Neural-network-based constrained optimal control scheme for discrete-time switched nonlinear system using dual heuristic programming, " IEEE Trans. Automat. Sci. Eng. , vol. 11, no. 3, pp. 839-849, Jul. 2014. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6736141
    [7]
    H. G. Zhang, Z. S. Wang, and D. R. Liu, "Global asymptotic stability of recurrent neural networks with multiple time-varying delays, " IEEE Trans. Neur. Net. , vol. 19, no. 5, pp. 855-873, Oct. 2008. http://ieeexplore.ieee.org/document/4469952/
    [8]
    H. G. Zhang, Z. W. Liu, G. B. Huang, and Z. S. Wang, "Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay, " IEEE Trans. Neur. Net. , vol. 21, no. 1, pp. 91-106, Jan. 2010. http://ieeexplore.ieee.org/document/5345699/
    [9]
    M. G. De Giorgi, P. M. Congedo, M. Malvoni, and D. Laforgia, "Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate, " Energy Convers. Manag. , vol. 100, pp. 117-130, Aug. 2015. http://www.sciencedirect.com/science/article/pii/S0196890415004422
    [10]
    J. G. da Silva Fonseca Jr, T. Oozeki, T. Takashima, G. Koshimizu, Y. Uchida, and K. Ogimoto, "Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan, " Progr. Photovolt. , vol. 20, no. 7, pp. 874-882, Nov. 2012. doi: 10.1002/pip.1152/abstract
    [11]
    G. Chicco, V. Cocina, P. Di Leo, and F. Spertino, "Weather forecastbased power predictions and experimental results from photovoltaic systems, " in Proc. 2014 Int. Symp. Power Electronics, Electrical Drives, Automation and Motion, Ischia, 2014, pp. 342-346. https://www.researchgate.net/publication/271429960_Weather_forecast-based_power_predictions_and_experimental_results_from_photovoltaic_systems
    [12]
    H. B. Zhang and M. Y. Yang, "Ultra-short-term forecasting for photovoltaic power output based on least square support vector machine, " Modern Electr. Power, vol. 32, no. 1, pp. 70-75, Feb. 2015. https://www.researchgate.net/publication/226527334_Short-term_Forecasting_in_Power_Systems_A_Guided_Tour
    [13]
    J. Shi, W. J. Lee, Y. Q. Liu, Y. P. Yang, and P. Wang, "Forecasting power output of photovoltaic systems based on weather classification and support vector machines, " IEEE Trans. Ind. Appl. , vol. 48, no. 3, pp. 1064-1069, May-Jun. 2012. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6168891
    [14]
    R. De Leone, M. Pietrini, and A. Giovannelli, "Photovoltaic energy production forecast using support vector regression, " Neural Comput. Appl. , vol. 26, no. 8, pp. 1955-1962, Nov. 2015. doi: 10.1007/s11590-016-1010-z
    [15]
    K. Crammer and Y. Singer, "On the algorithmic implementation of multiclass kernel-based vector machines, " J. Mach. Learn. Res. , vol. 2, pp. 265-262, Mar. 2001. http://dl.acm.org/citation.cfm?id=944813
    [16]
    V. N. Vapnik, The Nature of Statistical Learning Theory. New York:Springer-Verlag, 1995.
    [17]
    J. Kennedy and R. C. Eberhart, "Particle swarm optimization, " in Proc. IEEE Int. Conf. Neural Networks, Perth, WA, Austvalia, 1995, pp. 1942-1948. https://www.researchgate.net/publication/285642344_Proc_IEEE_Int_Conf_Neural_Networks_Perth_Australia_1995_IEEE_Service_Center_Piscataway

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (1283) PDF downloads(197) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return