IEEE/CAA Journal of Automatica Sinica
Citation: | Ming Yue, Linjiu Wang and Teng Ma, "Neural Network Based Terminal Sliding Mode Control for WMRs Affected by an Augmented Ground Friction With Slippage Effect," IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 498-506, July 2017. doi: 10.1109/JAS.2017.7510553 |
[1] |
Z. P. Jiang and H. Nijmeijer, "Tracking control of mobile robots: a case study in backstepping, " Automatica, vol. 33, no. 7, pp. 1393-1399, Jul. 1997. https://www.researchgate.net/publication/220158566_Tracking_Control_of_Mobile_Robots_A_Case_Study_in_Backstepping
|
[2] |
W. E. Dixon, A. Behal, D. M. Dawson, and S. P. Nagarkatti, Nonlinear Control of Engineering Systems:A Lyapunov-Based Approach. Boston, USA:Springer, 2003.
|
[3] |
K. D. Do, "Bounded controllers for global path tracking control of unicycle-type mobile robots, " Robot. Autonom. Syst. , vol. 61, no. 8, pp. 775-784, Aug. 2013. http://www.sciencedirect.com/science/article/pii/S0921889013000766
|
[4] |
J. S. Huang, C. Y. Wen, W. Wang, and Z. P. Jiang, "Adaptive output feedback tracking control of a nonholonomic mobile robot, " Automatica, vol. 50, no. 3, pp. 821-831, Mar. 2014. http://www.sciencedirect.com/science/article/pii/S0005109813005955
|
[5] |
X. B. Zhang, Y. C. Fang, and N. Sun, "Visual servoing of mobile robots for posture stabilization: from theory to experiments, " Int. J. Robust Nonlinear Control, vol. 25, no. 1, pp. 1-15, Jan. 2015. doi: 10.1002/rnc.3067/full
|
[6] |
C. G. Yang, Z. J. Li, R. X. Cui, and B. G. Xu, "Neural network-based motion control of an underactuated wheeled inverted pendulum model, " IEEE Trans. Neural Netw. Learn. Syst. , vol. 25, no. 11, pp. 2004-2016, Nov. 2014. http://ieeexplore.ieee.org/abstract/document/6762995/
|
[7] |
J. J. Sun and Z. J. Li, "Development and implementation of a wheeled inverted pendulum vehicle using adaptive neural control with extreme learning machines, " Cogn. Comput. , vol. 7, no. 6, pp. 740-752, Dec. 2015. http://www.eng.yale.edu/grablab/pubs/vasudevan_jmr2015.pdf
|
[8] |
M. Yue, C. An, Y. Du, and J. Z. Sun, "Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner, " Fuzzy Sets Syst. , vol. 290, pp. 158-177, May 2016. https://www.semanticscholar.org/paper/Indirect-adaptive-fuzzy-control-for-a-nonholonomic-Yue-An/030b2599f4c8ea2669c0158e152ad0e7a42f864c
|
[9] |
K. Iagnemma, S. Kang, H. Shibly, and S. Dubowsky, "Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers, " IEEE Trans. Robot. , vol. 20, no. 5, pp. 921-927, Oct. 2004. http://dl.acm.org/citation.cfm?id=2211698
|
[10] |
L. Ding, Z. Q. Deng, H. B. Gao, J. G. Tao, K. D. Iagnemma, and G. J. Liu, "Interaction mechanics model for rigid driving wheels of planetary rovers moving on sandy terrain with consideration of multiple physical effects, " J. Field Robot. , vol. 32, no. 6, pp. 827-859, Sep. 2015. doi: 10.1002/rob.21533/abstract
|
[11] |
Y. Okada, K. Nagatani, K. Yoshida, S. Tadokoro, T. Yoshida, and E. Koyanagi, "Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning, " J. Field Robot. , vol. 28, no. 6, pp. 875-893, Nov. -Dec. 2011. https://www.researchgate.net/profile/Kazuya_Yoshida3/publication/220647967_Shared_Autonomy_System_for_Tracked_Vehicles_on_Rough_Terrain_Based_on_Continuous_Three-Dimensional_Terrain_Scanning/links/564f714b08ae4988a7a83da7.pdf?origin=publication_list
|
[12] |
L. Ding, H. B. Gao, Z. Q. Deng, K. Nagatani, and K. Yoshida, "Experimental study and analysis on driving wheels' performance for planetary exploration rovers moving in deformable soil, " J. Terramech. , vol. 48, no. 1, pp. 27-45, Feb. 2011. https://www.researchgate.net/publication/223349856_Experimental_study_and_analysis_on_driving_wheels%27_performance_for_planetary_exploration_rovers_moving_in_deformable_soil
|
[13] |
C. Canudas-de-Wit, P. Tsiotras, E. Velenis, M. Basset, and G. Gissinger, "Dynamic friction models for road/tire longitudinal interaction, " Vehicle Syst. Dyn. , vol. 39, no. 3, pp. 189-226, Mar. 2003. http://dcsl.gatech.edu/papers/iasted02b.pdf
|
[14] |
C. Canudas-de-Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, "A new model for control of systems with friction, " IEEE Trans. Autom. Control, vol. 40, no. 3, pp. 419-425, Mar. 1995. doi: 10.1177/0959651812441749
|
[15] |
H. B. Pacejka and E. Bakker, "The magic formula tyre model, " Vehicle Syst. Dyn. , vol. 21, no. S1, pp. 1-18, Jan. 1992. doi: 10.1080/00423119208969994
|
[16] |
Y. C. Fang, B. J. Ma, P. C. Wang, and X. B. Zhang, "A motion planningbased adaptive control method for an underactuated crane system, " IEEE Trans. Control Syst. Technol. , vol. 20, no. 1, pp. 241-248, Jan. 2012.
|
[17] |
L. Lu, B. Yao, Q. F. Wang, and Z. Chen, "Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model, " Automatica, vol. 45, no. 12, pp. 2890-2896, Dec. 2009. https://www.researchgate.net/profile/Bin_Yao2/publication/3414835_Adaptive_robust_precision_motion_control_of_linear_motors_with_negligible_electrical_dynamics_Theory_and_experiments/links/0fcfd50b988462d124000000.pdf
|
[18] |
N. Sun, Y. C. Fang, and H. Chen, "A new antiswing control method for underactuated cranes with unmodeled uncertainties: theoretical design and hardware experiments, " IEEE Trans. Ind. Electron. , vol. 62, no. 1, pp. 453-465, Jan. 2015. https://www.researchgate.net/profile/Ning_Sun12/publication/309573652_2015_TIE_A_New_Antiswing_Control_Method_for_Underactuated_Craneswith_Unmodeled_Uncertainties_Theoretical_Design_andHardware_Experiments/links/581808fa08aeb720f689b88d.pdf?origin=publication_list
|
[19] |
R. R. Wang and J. M. Wang, "Tire-road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation, " Control Eng. Pract. , vol. 21, no. 1, pp. 65-75, Jan. 2013. https://www.researchgate.net/publication/222300981_Estimation_of_vehicle_sideslip_tire_force_and_wheel_cornering_stiffness
|
[20] |
H. B. Gao, X. G. Song, L. Ding, K. R. Xia, N. Li, and Z. Q. Deng, "Adaptive motion control of wheeled mobile robot with unknown slippage, " Int. J. Control, vol. 87, no. 8, pp. 1513-1522, Mar. 2014. https://www.researchgate.net/profile/Xingguo_Song/publication/262582257_Adaptive_motion_control_of_wheeled_mobile_robot_with_unknown_slippage/links/568c728d08ae197e4268c2aa.pdf?origin=publication_list
|
[21] |
Z. J. Li, S. M. Deng, C. Y. Su, G. L. Li, Z. G. Yu, Y. J. Liu, and M. Wang, "Decentralised adaptive control of cooperating robotic manipulators with disturbance observers, " IET Control Theory Appl. , vol. 8, no. 7, pp. 515-521, May 2014. https://www.researchgate.net/publication/262231731_Decentralised_adaptive_control_of_cooperating_Robotic_manipulators_with_disturbance_observers
|
[22] |
Z. J. Li, Y. P. Yang, and J. X. Li, "Adaptive motion/force control of mobile under-actuated manipulators with dynamics uncertainties by dynamic coupling and output feedback, " IEEE Trans. Control Syst. Technol. , vol. 18, no. 5, pp. 1068-1079, Sep. 2010. https://www.researchgate.net/publication/224606423_Adaptive_MotionForce_Control_of_Mobile_Under-Actuated_Manipulators_With_Dynamics_Uncertainties_by_Dynamic_Coupling_and_Output_Feedback
|
[23] |
N. Sun, Y. C. Fang, H. Chen, and B. He, "Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: design and experiments, " IEEE/ASME Trans. Mechatron. , vol. 20, no. 5, pp. 2107-2119, Oct. 2015.
|
[24] |
N. Sun, Y. C. Fang, and X. B. Zhang, "Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs, " Automatica, vol. 49, no. 5, pp. 1318-1325, May 2013. http://www.sciencedirect.com/science/article/pii/S000510981300040X
|
[25] |
Z. J. Li, Y. N. Zhang, and Y. P. Yang, "Support vector machine optimal control for mobile wheeled inverted pendulums with unmodelled dynamics, " Neurocomputing, vol. 73, no. 13-15, pp. 2773-2782, Aug. 2010. http://www.sciencedirect.com/science/article/pii/S0925231210002067
|
[26] |
J. A. Rossiter, Model-Based Predictive Control: A Practical Approach. Boca Raton, FL, USA: CRC Press, 2003.
|
[27] |
L. X. Zhang, S. L. Zhuang, and R. D. Braatz, "Switched model predictive control of switched linear systems: feasibility, stability and robustness, " Automatica, vol. 67, pp. 8-21, May 2016. http://www.sciencedirect.com/science/article/pii/S000510981600011X
|
[28] |
Y. J. Liu, S. C. Tong, and C. L. P. Chen, "Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics, " IEEE Trans. Fuzzy Syst. , vol. 21, no. 2, pp. 275-288, Apr. 2013. http://www.sciencedirect.com/science/article/pii/S000510981400449X
|
[29] |
Y. M. Li, S. C. Tong, and T. S. Li, "Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones, " IEEE Trans. Fuzzy Syst. , vol. 23, no. 4, pp. 1228-1241, Aug. 2015. https://www.semanticscholar.org/paper/Adaptive-Neural-Network-Tracking-Control-of-MIMO-Zhang-Ge/7f96ac9aca570ada6da7eff1798b6fd93250359c
|
[30] |
W. He, S. S. Ge, Y. N. Li, E. Chew, and Y. S. Ng, "Neural network control of a rehabilitation robot by state and output feedback, " J. Intell. Robot. Syst. , vol. 80, no. 1, pp. 15-31, Oct. 2015. http://dl.acm.org/citation.cfm?id=2821996
|
[31] |
Y. J. Liu and S. C. Tong, "Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input, " IEEE Trans. Cybern. , vol. 45, no. 3, pp. 497-505, Mar. 2015.
|
[32] |
Q. L. Hu, B. Li, and A. H. Zhang, "Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment, " Nonlinear Dyn. , vol. 73, no. 1-2, pp. 53-71, Jul. 2013. https://www.researchgate.net/publication/257634090_Robust_finite-time_control_allocation_in_spacecraft_attitude_stabilization_under_actuator_misalignment
|
[33] |
Q. L. Hu, B. Y. Jiang, and M. I. Friswell, "Robust saturated finite time output feedback attitude stabilization for rigid spacecraft, " J. Guid. Control Dyn. , vol. 37, no. 6, pp. 1914-1929, 2014. https://www.researchgate.net/publication/269785527_Robust_Saturated_Finite_Time_Output_Feedback_Attitude_Stabilization_for_Rigid_Spacecraft
|
[34] |
Q. L. Hu and J. Zhang, "Relative position finite-time coordinated tracking control of spacecraft formation without velocity measurements, " ISA Trans. , vol. 54, pp. 60-74, Jan. 2015. https://www.researchgate.net/profile/Jian_Zhang252/publication/265090411_Relative_position_finite-time_coordinated_tracking_control_of_spacecraft_formation_without_velocity_measurements/links/579d52a208ae80bf6ea487ae.pdf?origin=publication_detail
|
[35] |
S. H. Li, M. M. Zhou, and X. H. Yu, "Design and implementation of terminal sliding mode control method for PMSM speed regulation system, " IEEE Trans. Ind. Inf. , vol. 9, no. 4, pp. 1879-1891, Nov. 2013. https://www.researchgate.net/publication/260626819_Design_and_Implementation_of_Terminal_Sliding_Mode_Control_Method_for_PMSM_Speed_Regulation_System
|
[36] |
J. X. Wang, S. H. Li, J. Yang, B. Wu, and Q. Li, "Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances, " IET Control Theory Appl. , vol. 9, no. 4, pp. 579-586, Feb. 2015. https://www.researchgate.net/publication/273287139_Extended_state_observer-based_sliding_mode_control_for_PWM-based_DC-DC_buck_power_converter_systems_with_mismatched_disturbances
|
[37] |
M. Yue, S. Wang, and Y. S. Zhang, "Adaptive fuzzy logic-based sliding mode control for a nonholonomic mobile robot in the presence of dynamic uncertainties, " Proc. Instit. Mech. Eng. C J. Mech. Eng. Sci. , vol. 229, no. 11, pp. 1979-1988, Sep. 2015. https://www.researchgate.net/profile/Jafar_Keighobadi/publication/266892796_Dynamic_Sliding_Mode_Controller_for_Trajectory_Tracking_Of_Nonholonomic_Mobile_Robots/links/564aef7c08ae44e7a28e4534.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
|
[38] |
S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, Stable Adaptive Neural Network Control. New York, USA:Springer, 2002.
|
[39] |
W. S. Chen, L. C. Jiao, and J. S. Wu, "Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators," Neural Comput. Appl., vol. 21, no. 2, pp. 351-363, Mar. 2012. http://dl.acm.org/citation.cfm?id=2157566
|