A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 6
Jun.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
S. Wu, “Partially-observed maximum principle for backward stochastic differential delay equations,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1524–1526, Jun. 2024. doi: 10.1109/JAS.2017.7510472
Citation: S. Wu, “Partially-observed maximum principle for backward stochastic differential delay equations,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1524–1526, Jun. 2024. doi: 10.1109/JAS.2017.7510472

Partially-Observed Maximum Principle for Backward Stochastic Differential Delay Equations

doi: 10.1109/JAS.2017.7510472
  • loading
  • [1]
    J. M. Bismut, “An introductory approach to duality in optimal stochastic control,” SIAM Review, vol. 20, no. 1, pp. 62–78, 1978. doi: 10.1137/1020004
    [2]
    E. Pardoux and S. Peng, “Adapted solutions of backward stochastic differential equations,” System &Control Letters, vol. 14, no. 1, pp. 55–61, 1990.
    [3]
    N. El Karoui, S. Peng, and M. C. Quenez, “Backward stochastic differential equations in finance,” Math. Finance, vol. 7, no. 1, pp. 1–71, 1997. doi: 10.1111/1467-9965.00022
    [4]
    A. Lim and X. Zhou, “Linear-quadratic control of backward stochastic differential equations,” SIAM J. Control Optim., vol. 40, no. 2, pp. 450–474, 2001. doi: 10.1137/S0363012900374737
    [5]
    G. Wang and Z. Yu, “A partial information non-zero sum differential game of backward stochastic differential equations with applications,” Automatica, vol. 48, no. 2, pp. 342–352, 2012. doi: 10.1016/j.automatica.2011.11.010
    [6]
    L. Delong and P. Imkeller, “Backward stochastic differential equations with time delayed generators-results and counter examples,” Ann. Appl. Probab., vol. 20, no. 4, pp. 1512–1536, 2010.
    [7]
    L. Delong, “Applications of time-delayed backward stochastic differential equations to pricing, hedging and portfolio management in insurance and finance,” Appl. Math. (Warsaw), vol. 39, no. 4, pp. 463–488, 2012. doi: 10.4064/am39-4-5
    [8]
    L. Chen and J. Huang, “Stochastic maximum principle for controlled backward delayed system via advanced stochastic differential equation,” J. Optim. Theory Appl., vol. 167, no. 3, pp. 1112–1135, 2015. doi: 10.1007/s10957-013-0386-5
    [9]
    S. Tang, “The maximum principle for partially-observed optimal control of stochastic differential equations,” SIAM J. Control Optim., vol. 36, no. 5, pp. 1596–1617, 1998. doi: 10.1137/S0363012996313100
    [10]
    G. Wang and Z. Wu, “General maximum principles for partially observed risk-sensitive optimal control problems and applications to finance,” J. Optim. Theory. Appl., vol. 141, no. 3, pp. 677–700, 2009. doi: 10.1007/s10957-008-9484-1
    [11]
    J. Shi and Z. Wu, “Maximum principle for partially-observed optimal control of fully-coupled forward-backward stochastic systems,” J. Optim. Theory. Appl., vol. 145, no. 3, pp. 543–578, 2010. doi: 10.1007/s10957-010-9696-z
    [12]
    R. S. Liptser and A. N. Shiryayev, Statistics of Random Process, NewYork, USA: Springer, 1977.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads(20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return