IEEE/CAA Journal of Automatica Sinica
Citation: | Leilei Geng, Zexuan Ji, Yunhao Yuan and Yilong Yin, "Fractional-order Sparse Representation for Image Denoising," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 555-563, Mar. 2018. doi: 10.1109/JAS.2017.7510412 |
[1] |
M. Afonso and J. M. Sanches, "Image reconstruction under multiplicative speckle noise using total variation, " Neurocomputing, vol. 150, pp. 200-213, Feb. 2015. http://dl.acm.org/citation.cfm?id=2937597
|
[2] |
Z. G. Sun, S. C. Chen, and L. S. Qiao, "A general non-local denoising model using multi-kernel-induced measures, " Pattern Recognit., vol. 47, no. 4, pp. 1751-1763, Apr. 2014. doi: 10.1016/j.patcog.2013.11.003
|
[3] |
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "BM3D image denoising with shape-adaptive principal component analysis, " in Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representation, Saint Malo, France, 2009. http://www.researchgate.net/publication/29609580_BM3D_Image_Denoising_with_Shape-Adaptive_Principal_Component_Analysis?ev=prf_cit
|
[4] |
Y. Romano and M. Elad, "Improving K-SVD denoising by post-processing its method-noise, " in Proc. 20th IEEE Int. Conf. Image Processing, Melbourne, VIC, Australia, 2013, pp. 435-439.
|
[5] |
M. Elad and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries, " IEEE Trans. Image Process. , vol. 15, no. 12, pp. 3736-45, Dec. 2006. http://ieeexplore.ieee.org/document/4011956/
|
[6] |
A. M. Bruckstein, D. L. Donoho, and M. Elad, "From sparse solutions of systems of equations to sparse modeling of signals and images, " SIAM Rev., vol. 51, no. 1, pp. 34-81, Feb. 2009. http://dl.acm.org/citation.cfm?id=1654037
|
[7] |
P. Chatterjee and P. Milanfar, "Clustering-based denoising with locally learned dictionaries, " IEEE Trans. Image Process., vol. 18, no. 7, pp. 1438-1451, Jul. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19447711
|
[8] |
M. Zibulevsky and M. Elad, "L1-l2 optimization in signal and image processing, " IEEE Signal Process. Mag. , vol. 27, no. 3, pp. 76-88, May 2010. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5447114
|
[9] |
J. A. Tropp and S. J. Wright, "Computational methods for sparse solution of linear inverse problems, " Proc. IEEE, vol. 98, no. 6, pp. 948-958, Jun. 2010.
|
[10] |
X. Q. Zhang, M. Burger, X. Bresson, and S. Osher, "Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, " SIAM J. Imag. Sci., vol. 3, no. 3, pp. 253-276, Jul. 2010. http://dl.acm.org/citation.cfm?id=1958730
|
[11] |
A. Marquina and S. J. Osher, "Image super-resolution by TV-regularization and Bregman iteration, " J. Sci. Comp. , vol. 37, no. 3, pp. 367-382, Dec. 2008. http://dl.acm.org/citation.cfm?id=1459128
|
[12] |
M. Elad and M. Aharon, "Image denoising via learned dictionaries and sparse representation, " in Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, New York, NY, USA, 2006, pp. 895-900. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1640847
|
[13] |
R. Rubinstein, T. Peleg, and M. Elad, "Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model, " IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661-677, Feb. 2013. http://ieeexplore.ieee.org/document/6339105
|
[14] |
J. C. Yang, Z. W. Wang, Z. Lin, S. Cohen, and T. Huang, "Coupled dictionary training for image super-resolution." IEEE Trans. Image Process., vol.21, no.8, pp.3467-78, 2012. doi: 10.1109/TIP.2012.2192127
|
[15] |
Y. B. Tang, N. Xu, A. M. Jiang, and C. P. Zhu, "Image denoising via sparse representation using rotational dictionary, " J. Electron. Imag. vol. 23, no. 5, Article ID 053016, Oct. 2014. http://ieeexplore.ieee.org/document/6913647/
|
[16] |
W. S. Dong, L. Zhang, G. M. Shi, and X. Li, "Nonlocally centralized sparse representation for image restoration, " IEEE Trans. Image Process., vol. 22, no. 4, pp. 1620-1630, Apr. 2013. http://ieeexplore.ieee.org/document/6392274/
|
[17] |
W. S. Dong, G. M. Shi, Y. Ma, and X. Li, "Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture, " Int. J. Comp. Vis., vol. 114, no. 2-3, pp. 217-232, Sep. 2015. http://dl.acm.org/citation.cfm?id=2817589&preflayout=tabs
|
[18] |
N. He, J. B. Wang, L. L. Zhang, and K. Lu, "An improved fractional-order differentiation model for image denoising, " Signal Process., vol. 112, pp. 180-188, Jul. 2015. http://www.sciencedirect.com/science/article/pii/S0165168414003892
|
[19] |
Y. F. Pu, J. L. Zhou, and X. Yuan, "Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement, " IEEE Trans. Image Process., vol. 19, no. 2, pp. 491-511, Feb. 2010. http://ieeexplore.ieee.org/document/5340520/
|
[20] |
S. Larnier and R. Mecca, "Fractional-order diffusion for image reconstruction, " in Proc. 2012 IEEE Int. Conf. Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012, pp. 1057-1060. http://ieeexplore.ieee.org/document/6288068/
|
[21] |
Y. H. Yuan, Q. S. Sun, and H. W. Ge, "Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition, " Pattern Recognit., vol. 47, no. 3, pp. 1411-1424, Mar. 2014. http://dl.acm.org/citation.cfm?id=2562363.2563023
|
[22] |
G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore:Johns Hopkins University Press, 1996.
|