A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 2
Mar.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Leilei Geng, Zexuan Ji, Yunhao Yuan and Yilong Yin, "Fractional-order Sparse Representation for Image Denoising," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 555-563, Mar. 2018. doi: 10.1109/JAS.2017.7510412
Citation: Leilei Geng, Zexuan Ji, Yunhao Yuan and Yilong Yin, "Fractional-order Sparse Representation for Image Denoising," IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 555-563, Mar. 2018. doi: 10.1109/JAS.2017.7510412

Fractional-order Sparse Representation for Image Denoising

doi: 10.1109/JAS.2017.7510412
Funds:

the National Natural Science Foundation of China 61573219

the National Natural Science Foundation of China 61402203

the National Natural Science Foundation of China 61401209

the National Natural Science Foundation of China 61701192

the National Natural Science Foundation of China 61671274

More Information
  • Sparse representation models have been shown promising results for image denoising. However, conventional sparse representation-based models cannot obtain satisfactory estimations for sparse coefficients and the dictionary. To address this weakness, in this paper, we propose a novel fractional-order sparse representation (FSR) model. Specifically, we cluster the image patches into K groups, and calculate the singular values for each clean/noisy patch pair in the wavelet domain. Then the uniform fractional-order parameters are learned for each cluster. Then a novel fractional-order sample space is constructed using adaptive fractional-order parameters in the wavelet domain to obtain more accurate sparse coefficients and dictionary for image denoising. Extensive experimental results show that the proposed model outperforms state-of-the-art sparse representation-based models and the block-matching and 3D filtering algorithm in terms of denoising performance and the computational efficiency.

     

  • loading
  • [1]
    M. Afonso and J. M. Sanches, "Image reconstruction under multiplicative speckle noise using total variation, " Neurocomputing, vol. 150, pp. 200-213, Feb. 2015. http://dl.acm.org/citation.cfm?id=2937597
    [2]
    Z. G. Sun, S. C. Chen, and L. S. Qiao, "A general non-local denoising model using multi-kernel-induced measures, " Pattern Recognit., vol. 47, no. 4, pp. 1751-1763, Apr. 2014. doi: 10.1016/j.patcog.2013.11.003
    [3]
    K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "BM3D image denoising with shape-adaptive principal component analysis, " in Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representation, Saint Malo, France, 2009. http://www.researchgate.net/publication/29609580_BM3D_Image_Denoising_with_Shape-Adaptive_Principal_Component_Analysis?ev=prf_cit
    [4]
    Y. Romano and M. Elad, "Improving K-SVD denoising by post-processing its method-noise, " in Proc. 20th IEEE Int. Conf. Image Processing, Melbourne, VIC, Australia, 2013, pp. 435-439.
    [5]
    M. Elad and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries, " IEEE Trans. Image Process. , vol. 15, no. 12, pp. 3736-45, Dec. 2006. http://ieeexplore.ieee.org/document/4011956/
    [6]
    A. M. Bruckstein, D. L. Donoho, and M. Elad, "From sparse solutions of systems of equations to sparse modeling of signals and images, " SIAM Rev., vol. 51, no. 1, pp. 34-81, Feb. 2009. http://dl.acm.org/citation.cfm?id=1654037
    [7]
    P. Chatterjee and P. Milanfar, "Clustering-based denoising with locally learned dictionaries, " IEEE Trans. Image Process., vol. 18, no. 7, pp. 1438-1451, Jul. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19447711
    [8]
    M. Zibulevsky and M. Elad, "L1-l2 optimization in signal and image processing, " IEEE Signal Process. Mag. , vol. 27, no. 3, pp. 76-88, May 2010. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5447114
    [9]
    J. A. Tropp and S. J. Wright, "Computational methods for sparse solution of linear inverse problems, " Proc. IEEE, vol. 98, no. 6, pp. 948-958, Jun. 2010.
    [10]
    X. Q. Zhang, M. Burger, X. Bresson, and S. Osher, "Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, " SIAM J. Imag. Sci., vol. 3, no. 3, pp. 253-276, Jul. 2010. http://dl.acm.org/citation.cfm?id=1958730
    [11]
    A. Marquina and S. J. Osher, "Image super-resolution by TV-regularization and Bregman iteration, " J. Sci. Comp. , vol. 37, no. 3, pp. 367-382, Dec. 2008. http://dl.acm.org/citation.cfm?id=1459128
    [12]
    M. Elad and M. Aharon, "Image denoising via learned dictionaries and sparse representation, " in Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, New York, NY, USA, 2006, pp. 895-900. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1640847
    [13]
    R. Rubinstein, T. Peleg, and M. Elad, "Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model, " IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661-677, Feb. 2013. http://ieeexplore.ieee.org/document/6339105
    [14]
    J. C. Yang, Z. W. Wang, Z. Lin, S. Cohen, and T. Huang, "Coupled dictionary training for image super-resolution." IEEE Trans. Image Process., vol.21, no.8, pp.3467-78, 2012. doi: 10.1109/TIP.2012.2192127
    [15]
    Y. B. Tang, N. Xu, A. M. Jiang, and C. P. Zhu, "Image denoising via sparse representation using rotational dictionary, " J. Electron. Imag. vol. 23, no. 5, Article ID 053016, Oct. 2014. http://ieeexplore.ieee.org/document/6913647/
    [16]
    W. S. Dong, L. Zhang, G. M. Shi, and X. Li, "Nonlocally centralized sparse representation for image restoration, " IEEE Trans. Image Process., vol. 22, no. 4, pp. 1620-1630, Apr. 2013. http://ieeexplore.ieee.org/document/6392274/
    [17]
    W. S. Dong, G. M. Shi, Y. Ma, and X. Li, "Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture, " Int. J. Comp. Vis., vol. 114, no. 2-3, pp. 217-232, Sep. 2015. http://dl.acm.org/citation.cfm?id=2817589&preflayout=tabs
    [18]
    N. He, J. B. Wang, L. L. Zhang, and K. Lu, "An improved fractional-order differentiation model for image denoising, " Signal Process., vol. 112, pp. 180-188, Jul. 2015. http://www.sciencedirect.com/science/article/pii/S0165168414003892
    [19]
    Y. F. Pu, J. L. Zhou, and X. Yuan, "Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement, " IEEE Trans. Image Process., vol. 19, no. 2, pp. 491-511, Feb. 2010. http://ieeexplore.ieee.org/document/5340520/
    [20]
    S. Larnier and R. Mecca, "Fractional-order diffusion for image reconstruction, " in Proc. 2012 IEEE Int. Conf. Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012, pp. 1057-1060. http://ieeexplore.ieee.org/document/6288068/
    [21]
    Y. H. Yuan, Q. S. Sun, and H. W. Ge, "Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition, " Pattern Recognit., vol. 47, no. 3, pp. 1411-1424, Mar. 2014. http://dl.acm.org/citation.cfm?id=2562363.2563023
    [22]
    G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore:Johns Hopkins University Press, 1996.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (1182) PDF downloads(92) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return