A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 2
Apr.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Yang Zhao, Yan Li, Fengyu Zhou, Zhongkai Zhou and YangQuan Chen, "An Iterative Learning Approach to Identify Fractional Order KiBaM Model," IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 322-331, Apr. 2017. doi: 10.1109/JAS.2017.7510358
Citation: Yang Zhao, Yan Li, Fengyu Zhou, Zhongkai Zhou and YangQuan Chen, "An Iterative Learning Approach to Identify Fractional Order KiBaM Model," IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 322-331, Apr. 2017. doi: 10.1109/JAS.2017.7510358

An Iterative Learning Approach to Identify Fractional Order KiBaM Model

doi: 10.1109/JAS.2017.7510358
Funds:

This work was supported by the Major Scientific Instrument Development Program of the National Natural Science Foundation of China 61527809

the National Natural Science Foundation of China 61374101

the National Natural Science Foundation of China 61375084

and the Young Scholars Program of Shandong University 2015WLJH44

More Information
  • This paper discusses the parameter and differentiation order identification of continuous fractional order KiBaM models in ARX (autoregressive model with exogenous inputs) and OE (output error model) forms. The least squares method is applied to the identification of nonlinear and linear parameters, in which the Grünwald-Letnikov definition and short memory principle are applied to compute the fractional order derivatives. An adaptive P-type order learning law is proposed to estimate the differentiation order iteratively and accurately. Particularly, a unique estimation result and a fast convergence speed can be arrived by using the small gain strategy, which is unidirectional and has certain advantages than some state-of-art methods. The proposed strategy can be successfully applied to the nonlinear systems with quasi-linear characteristics. The numerical simulations are shown to validate the concepts.

     

  • loading
  • [1]
    G. P. Liu, "Nonlinear Identification and Control: A Neural Network Approach, " Berlin: Springer Science and Business Media, 2012.
    [2]
    M. Mahfouf, D. A. Linkens, and D. Xue, "A new generic approach to model reduction for complex physiologically based drug models, " Control Eng. Pract. , vol. 10, no. 1, pp. 67-81, Jan. 2002. http://www.sciencedirect.com/science/article/pii/S0967066101001319
    [3]
    C. Campbell, "Kernel methods: a survey of current techniques, " Neurocomputing, vol. 48, no. 1-4, pp. 63-84, Oct. 2002. http://www.sciencedirect.com/science/article/pii/S0925231201006439
    [4]
    L. Sommacal, P. Melchior, A. Oustaloup, J. M. Cabelguen, and A. J. Ijspeert, "Fractional multi-models of the frog gastrocnemius muscle, " J. Vibr. Control, vol. 14, no. 9-10, pp. 1415-1430, Sep. 2008. doi: 10.1177/1077546307087440
    [5]
    W. X. Zhao, "Parametric identification of Hammerstein systems with consistency results using stochastic inputs, " IEEE Trans. Autom. Control, vol. 55, no. 2, pp. 474-480, Feb. 2010. http://dl.acm.org/citation.cfm?id=2941400
    [6]
    K. S. Narendra and P. G. Gallman, "An iterative method for the identification of nonlinear systems using a Hammerstein model, " IEEE Trans. Autom. Control, vol. 11, no. 3, pp. 546-550, Jul. 1966. https://www.researchgate.net/publication/279571168_An_iterative_method_for_Hammerstein-Wiener_systems_parameter_identification
    [7]
    Y. Liu and E. W. Bai, "Iterative identification of Hammerstein systems, " Automatica, vol. 43, no. 2, pp. 346-354, Feb. 2007. https://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/identification-of-mimo-hammerstein-wiener-system-MNb0eNSyys
    [8]
    Y. W. Mao and F. Ding, "Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique, " Nonlinear Dyn. , vol. 79, no. 3, pp. 1745-1755, Feb. 2015. doi: 10.1007/s11071-014-1771-9
    [9]
    X. F. Zhu and D. E. Seborg, "Nonlinear predictive control based on Hammerstein models, " Control Theory Appl. , vol. 11, no. 5, pp. 564-575, Oct. 1994. http://www.sciencedirect.com/science/article/pii/S0378775308012706
    [10]
    D. R. Morgan, Z. X. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers, " IEEE Trans. Signal Process. , vol. 54, no. 10, pp. 3852-3860, Oct. 2006. http://dl.acm.org/citation.cfm?id=2198494
    [11]
    I. W. Hunter and M. J. Korenberg, "The identification of nonlinear biological systems: Wiener and Hammerstein cascade models, " Biol. Cybern. , vol. 55, no. 2-3, pp. 135-144, Nov. 1986. doi: 10.1007/BF02368452
    [12]
    E. W. Bai, Z. J. Cai, S. Dudley-Javorosk, and R. K. Shields, "Identification of a modified Wiener-Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling, " Automatica, vol. 45, no. 3, pp. 736-743, Mar. 2009. http://europepmc.org/articles/PMC3586551
    [13]
    J. P. Costa, A. Lagrange, and A. Arliaud, "Acoustic echo cancellation using nonlinear cascade filters, " in Proc. Int. Conf. Acoustics, Speech, and Signal Processing. Hong Kong, China, 2003.
    [14]
    L. Vanbeylen, R. Pintelon, and J. Schoukens, "Blind maximum likelihood identification of Hammerstein systems, " Automatica, vol. 44, no. 12, pp. 3139-3146, Dec. 2008. http://www.sciencedirect.com/science/article/pii/S0005109808003063
    [15]
    M. Boutayeb, D. Aubry, and M. Darouach, "A robust and recursive identification method for MISO Hammerstein model, " in Proc. Int. Conf. Control '96. Washington DC, USA, 1996, pp. 447-452.
    [16]
    W. Greblicki, "Continuous-time Hammerstein system identification, " IEEE Trans. Autom. Control, vol. 45, no. 6), 1232-1236, Jun. 2000. http://ishare.iask.sina.com.cn/f/15351700.html
    [17]
    I. Goethals, K. Pelckmans, J. A. K. Suykens, and B. De Moor, "Subspace identification of Hammerstein systems using least squares support vector machines, " IEEE Trans. Autom. Control, vol. 50, no. 10, pp. 1509-1519, Oct. 2005. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.9296
    [18]
    T. Pritz, "Five-parameter fractional derivative model for polymeric damping materials, " J. Sound Vibr. , vol. 265, no. 5, pp. 935-952, Aug. 2003. http://www.doc88.com/p-7498229768302.html
    [19]
    A. Dumlu and K. Erenturk, "Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order PIλDμ control, " IEEE Trans. Ind. Electron. , vol. 61, no. 7, pp. 3417-3426, Jul. 2014. http://ieeexplore.ieee.org/document/6582520/
    [20]
    S. Gulistan, M. Abbas, and A. A. Syed, "Fractional dual fields for a slab placed in unbounded dielectric magnetic medium, " Int. J. Appl. Electrom. Mech. , vol. 46, no. 1, pp. 11-21, Jan. 2014. https://www.deepdyve.com/lp/ios-press/fractional-dual-fields-for-a-slab-placed-in-unbounded-dielectric-k12dUuIjO0
    [21]
    K. B. Oldham and J. Spanier, "The replacement of Fick's laws by a formulation involving semidifferentiation, " J. Electroanal. Chem. Interf. Electrochem. , vol. 26, no. 2-3, pp. 331-341, Jul. 1970. http://www.sciencedirect.com/science/article/pii/S0022072870803163
    [22]
    K. B. Oldham and J. Spanier, The Fractional Calculus-Theory and Applications of Differentiation and Integration to Arbitrary Order. New York and London: Academic Press, 1974.
    [23]
    S. Victor, R. Malti, H. Garnier, and A. Oustaloup, "Parameter and differentiation order estimation in fractional models, "Automatica, vol. 49, no. 4, pp. 926-935, Apr. 2013. http://www.sciencedirect.com/science/article/pii/S0005109813000277
    [24]
    N. Heymans and J. C. Bauwens, "Fractal rheological models and fractional differential equations for viscoelastic behavior, " Rheol. Acta, vol. 33, no. 3, pp. 210-219, May1994. doi: 10.1007/BF00437306
    [25]
    J. Sabatier, M. Merveillaut, J. M. Francisco, F. Guillemard, and D. Porcelatto, "Fractional models for lithium-ion batteries, " in Proc. 2013 European Control Conf. , Zurich, Switzerland, 2013, pp. 3458-3463.
    [26]
    K. C. Cao, Y. Q. Chen, D. Stuart, and D. Yue, "Cyber-physical modeling and control of crowd of pedestrians: a review and new framework, " IEEE/CAA J. Autom. Sinica, vol. 2, no. 3, pp. 334-344, Jul. 2015. http://www.ieee-jas.org/CN/abstract/abstract13.shtml
    [27]
    M. Ichise, Y. Nagayanagi, and T. Kojima, "An analog simulation of non-integer order transfer functions for analysis of electrode processes, " J. Electroanal. Chem. Interf. Electrochem. , vol. 33, no. 2, pp. 253-265, Dec. 1971. http://www.sciencedirect.com/science/article/pii/S0022072871801158
    [28]
    A. Boroomand and M. B. Menhaj, "Fractional-order Hopfield neural networks, " in Advances in Neuro-Information Processing, Springer Berlin Heidelberg, 2009, pp. 883-890. doi: 10.1007/978-3-642-02490-0_108
    [29]
    A. Maachou, R. Malti, P. Melchior, J. L. Battaglia, A. Oustaloup, and B. Hay, "Thermal system identification for large temperature variations using fractional Volterra series, " in Proc. 4th IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain, 2010.
    [30]
    S. Oukacine, T. Djamah, S. Djennoune, R. Mansouri, and M. Bettayeb, "Multi-model identification of a fractional non linear system, " in Proc. 6th IFAC Workshop on Fractional Differentiation and its Applications, 2013, pp. 48-53.
    [31]
    S. Westerlund and L. Ekstam, "Capacitor theory, " IEEE Trans. Dielectr. Electr. Insul. , vol. 1, no. 5, pp. 826-839, Oct. 1994. http://myelectrical.com/notes/entryid/221/capacitor-theory
    [32]
    E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications. 2nd ed. Manhattan: John Wiley & Sons, 2005.
    [33]
    A. Seaman, T. S. Dao, and J. McPhee, "A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation, " J. Power Sources, vol. 256, pp. 410-423, Jun. 2014. https://www.deepdyve.com/lp/elsevier/a-survey-of-mathematics-based-equivalent-circuit-and-electrochemical-9P2QbpKlJc
    [34]
    T. Kim and W. Qiao, "A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects, " IEEE Trans. Energy Convers. , vol. 26, no. 4, pp. 1172-1180, Dec. 2011. http://www.wendangku.net/doc/48bf513365ce05087732134f.html
    [35]
    J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Dordrecht: Springer, 2007.
    [36]
    I. Podlubny, Fractional Differential Equations. Pittsburgh: Academic Press, 1998.
    [37]
    F. M. Le, I. Markovsky, C. T. Freeman, and E. Rogers, "Identification of electrically stimulated muscle models of stroke patients, " Control Eng. Pract. , vol. 18, no. 4, pp. 396-407, Apr. 2010.
    [38]
    J. D. Gabano, T. Poinot, and H. Kanoun, "LPV continuous fractional modeling applied to ultracapacitor impedance identification, " Control Eng. Pract. , vol. 45, pp. 86-97, Dec. 2015. http://www.sciencedirect.com/science/article/pii/S0967066115300137
    [39]
    L. J. Gao, S. Y. Liu, and R. A. Dougal, "Dynamic lithium-ion battery model for system simulation, " IEEE Trans. Compon. Packaging Technol. , vol. 25, no. 3, pp. 495-505, Sep. 2002. http://www.doc88.com/p-015671429400.html
    [40]
    P. Rong and M. Pedram, "An analytical model for predicting the remaining battery capacity of lithium-ion batteries, " IEEE Trans. Very Large Scale Integr. Syst. , vol. 14, no. 5, pp. 441-451, May2006. http://ieeexplore.ieee.org/document/1650223/
    [41]
    C. C. Weng, S. Y. Chen, and J. C. Chang, "Predicting remaining discharge time of a Lithium-ion battery by using residual capacity and workload, " in Proc. 17th Int. Symp. Consumer Electronics (ISCE), Hsinchu City, Taiwan, China, 2013, pp. 179-180. https://www.researchgate.net/publication/261308501_Predicting_remaining_discharge_time_of_a_Lithium-ion_battery_by_using_residual_capacity_and_workload
    [42]
    K. A. Smith, C. D. Rahn, and C. Y. Wang, "Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries, " IEEE Trans. Control Syst. Technol. , vol. 18, no. 3, pp. 654-663, May2010. http://ieeexplore.ieee.org/document/5256311/
    [43]
    N. M. Yusof, N. Ishak, M. H. F. Rahiman, R. Adnan, and M. Tajjudin, "Fractional-order model identification for electro-hydraulic actuator, " in Proc. 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 2015, pp. 1-5.
    [44]
    M. R. Kumar, S. Ghosh, and S. Das, "Identification of fractional order circuits from frequency response data using seeker optimization algorithm, " in Proc. Int. Conf. Industrial Instrumentation and Control (ICIC), Pune, India, 2015, pp. 197-202.
    [45]
    Y. Li, Y. Q. Chen, and H. S. Ahn, "On P-type fractional order iterative learning identification, " in Proc. 13th Int. Conf. Control, Automation and Systems, Gwangju, Korea, 2013, pp. 219-225.
    [46]
    Y. Li, Y. Q. Chen, and H. S. Ahn, "Fractional order iterative learning control for fractional order system with unknown initialization, " in Proc. American Control Conf. , Portland, OR, USA, 2014, pp. 5712-5717.
    [47]
    J. Sabatier, M. Aoun, A. Oustaloup, G. Grégoire, F. Ragot, and P. Roy, "Fractional system identification for lead acid battery state of charge estimation, " Signal Process. , vol. 86, no. 10, pp. 2645-2657, Oct. 2006. doi: 10.1007%2F978-3-642-23117-9_5
    [48]
    J. Sabatier, M. Cugnet, S. Laruelle, S. Grugeon, B. Sahut, A. Oustaloup, and J. M. Tarascon, "A fractional order model for lead-acid battery crankability estimation, " Commun. Nonlinear Sci. Numer. Simul. , vol. 15, no. 5, pp. 1308-1317, May2010. http://www.sciencedirect.com/science/article/pii/S1007570409003372
    [49]
    Efe M Ö, "Battery power loss compensated fractional order sliding mode control of a quadrotor UAV, " Asian J. Control, vol. 14, no. 2, pp. 413-425, Mar. 2012. doi: 10.1002/asjc.340/full
    [50]
    J. Sabatier, M. Merveillaut, J. M. Francisco, F. Guillemard, and D. Porcelatto, "Lithium-ion batteries modeling involving fractional differentiation, " J. Power Sources, vol. 262, pp. 36-43, Sep. 2014. http://www.sciencedirect.com/science/article/pii/S037877531400264X
    [51]
    J. M. Francisco, J. Sabatier, L. Lavigne, F. Guillemard, M. Moze, M. Tari, M. Merveillaut, and A. Noury, "Lithium-ion battery state of charge estimation using a fractional battery model, " in Proc. Int. Conf. Fractional Differentiation and Its Applications (ICFDA), Catania, Italy, 2014, pp. 1-6.
    [52]
    T. J. Freeborn, B. Maundy, and A. S. Elwakil, "Fractional-order models of supercapacitors, batteries and fuel cells: a survey, " Mater. Renew. Sustain. Energy, vol. 4, no. 3, pp. 9, Sep. 2015. doi: 10.1007/s40243-015-0052-y
    [53]
    T. Takamatsu and H. Ohmori, "State and parameter estimation of lithium-ion battery by Kreisselmeier-type adaptive observer for fractional calculus system, " in Proc. 54th Annu. Conf. Society of Instrument and Control Engineers of Japan (SICE),

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1327) PDF downloads(162) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return