IEEE/CAA Journal of Automatica Sinica
Citation: | Dina Tavares, Ricardo Almeida and Delfim F. M. Torres, "Constrained Fractional Variational Problems of Variable Order," IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 80-88, Jan. 2017. doi: 10.1109/JAS.2017.7510331 |
[1] |
A. Atangana and A. Kilicman, "On the generalized mass transport equation to the concept of variable fractional derivative," Math. Probl. Eng., vol. 2014, Art. ID 542809, 9 pages, Mar. 2014. https://www.hindawi.com/journals/mpe/2014/542809/
|
[2] |
C. M. Soon, C. F. M. Coimbra, and M. H. Kobayashi, "The variable viscoelasticity oscillator, "Ann. Phys., vol. 14, no. 6, pp. 378-389, Apr. 2005.
|
[3] |
S. G. Samko and B. Ross, "Integration and differentiation to a variable fractional order, "Integral Transform. Spec. Funct., vol. 1, no. 4, pp. 277-300, Dec. 1993.
|
[4] |
H. Sheng, H. Sun, C. Coopmans, Y. Chen, and G. W. Bohannan, "Physical experimental study of variable-order fractional integrator and differentiator, "in Proc. 4th IFAC Workshop Fractional Differentiation and Its Applications, Badajoz, Spain, 2010. doi: 10.1140%2Fepjst%2Fe2011-01384-4
|
[5] |
D. Valério, G. Vinagre, J. Domingues, and J. S. da Costa, "Variableorder fractional derivatives and their numerical approximations I-real orders, "in Symp. Fractional Signals and Systems Lisbon 09, Lisbon, Portugal, 2009. http://www.sciencedirect.com/science/article/pii/S0165168410001404
|
[6] |
A. B. Malinowska and D. F. M. Torres, "Fractional calculus of variations for a combined Caputo derivative, "Fract. Calc. Appl. Anal., vol. 14, no. 4, pp. 523-537, Dec. 2011.
|
[7] |
A. B. Malinowska and D. F. M. Torres, "Multiobjective fractional variational calculus in terms of a combined Caputo derivative, "Appl. Math. Comput., vol. 218, no. 9, pp. 5099-5111, Jan. 2012. http://www.sciencedirect.com/science/article/pii/S009630031101321X
|
[8] |
T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Fractional variational calculus with classical and combined Caputo derivatives, "Nonlinear Anal., vol. 75, no. 3, pp. 1507-1515, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0362546X11000113
|
[9] |
D. Tavares, R. Almeida, and D. F. M. Torres, "Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order, "Optimization, vol. 64, no. 6, pp. 1381-1391, Feb. 2015. doi: 10.1080/02331934.2015.1010088?src=recsys
|
[10] |
T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Fractional variational calculus of variable order, "in Advances in Harmonic Analysis and Operator Theory, The Stefan Samko Anniversary Volume, Operator Theory:Advances and Applications, A. Almeida, L. Castro, and F. O. Speck, Eds. Basel:Birkhäuser Verlag, 2013, pp. 291-301. doi: 10.1007/978-3-0348-0516-2_16
|
[11] |
T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Noether's theorem for fractional variational problems of variable order, "Cent. Eur. J. Phys., vol. 11, no. 6, pp. 691-701, Jun. 2013. http://adsabs.harvard.edu/abs/2013CEJPh..11..691O
|
[12] |
J. Cresson, "Fractional embedding of differential operators and Lagrangian systems, "J. Math. Phys., vol. 48, no. 3, Art. ID 033504, 34 pages, Mar. 2007. https://www.researchgate.net/publication/2128358_Fractional_embedding_of_differential_operators_and_Lagrangian_systems
|
[13] |
A. B. Malinowska and D. F. M. Torres, "Towards a combined fractional mechanics and quantization, "Fract. Calc. Appl. Anal., vol. 15, no. 3, pp. 407-417, Sep. 2012. doi: 10.2478/s13540-012-0029-9
|
[14] |
R. Almeida, S. Pooseh, and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations, London:Imperial College Press, 2015.
|
[15] |
D. Tavares, R. Almeida, and D. F. M. Torres, "Caputo derivatives of fractional variable order:numerical approximations, "Commun. Nonlinear Sci. Numer. Simul. vol. 35, pp. 69-87, Jun. 2016. http://www.sciencedirect.com/science/article/pii/S100757041500372X
|
[16] |
A. B. Malinowska, T. Odzijewicz, and D. F. M. Torres, Advanced methods in the fractional calculus of variations. Cham:Springer, 2015.
|
[17] |
A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations. London:Imperial College Press, 2012.
|