IEEE/CAA Journal of Automatica Sinica
Citation: | Benxin Zhang and Zhibin Zhu, "Linearized Proximal Alternating Direction Method of Multipliers for Parallel Magnetic Resonance Imaging," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 763-769, Oct. 2017. doi: 10.1109/JAS.2016.7510226 |
[1] |
L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms, " Phys. D Nonlinear Phenom. , vol. 60, no. 1-4, pp. 259-268, Nov. 1992. http://www.sciencedirect.com/science/article/pii/016727899290242F
|
[2] |
A. Chambolle, "An algorithm for total variation minimization and applications, " J. Math. Imaging Vis. , vol. 20, no. 1-2, pp. 89-97, Jan. -Mar. 2004. doi: 10.1023/B%3AJMIV.0000011325.36760.1e
|
[3] |
Y. L. Wang, J. F. Yang, W. T. Yin, and Y. Zhang, "A new alternating minimization algorithm for total variation image reconstruction, " SIAM J. Imaging Sci. , vol. 1, no. 3, pp. 248-272, Jul. 2008. http://www.researchgate.net/publication/304239179_A_new_alternating_minimization_algorithm_for_image_segmentation?ev=auth_pub
|
[4] |
Y. M. Chen, W. W. Hager, M. Yashtini, X. J. Ye, and H. C. Zhang, "Bregman operator splitting with variable stepsize for total variation image reconstruction, " Comput. Optim. Appl. , vol. 54, no. 2, pp. 317-342, Mar. 2013. doi: 10.1007/s10589-012-9519-2
|
[5] |
Y. M. Chen, W. Hager, F. Huang, D. Phan, X. J. Ye, and W. T. Yin, "Fast algorithms for image reconstruction with application to partially parallel MR imaging, " SIAM J. Imaging Sci. , vol. 5, no. 1, pp. 90-118, Jan. 2012. http://www.researchgate.net/publication/220124443_Fast_Algorithms_for_Image_Reconstruction_with_Application_to_Partially_Parallel_MR_Imaging
|
[6] |
S. Ramani and J. A. Fessler, "Parallel MR image reconstruction using augmented lagrangian methods, " IEEE Trans. Med. Imaging, vol. 30, no. 3, pp. 694-706, Mar. 2011. http://ieeexplore.ieee.org/document/5639083/
|
[7] |
X. J. Ye, Y. M. Chen, and F. Huang, "Computational acceleration for MR image reconstruction in partially parallel imaging, " IEEE Trans. Med. Imaging, vol. 30, no. 5, pp. 1055-1063, May 2011. http://ieeexplore.ieee.org/document/5565482/
|
[8] |
G. H. Yu, L. Q. Qi, and Y. H. Dai, "On nonmonotone chambolle gradient projection algorithms for total variation image restoration, " J. Math. Imaging Vis. , vol. 35, no. 2, pp. 143-154, Oct. 2009. doi: 10.1007/s10851-009-0160-3
|
[9] |
B. X. Zhang and Z. B. Zhu, "A modified quasi-Newton diagonal update algorithm for total variation denoising problems and nonlinear monotone equations with applications in compressive sensing, " Numer. Linear Algebra Appl. , vol. 22, no. 3, pp. 500-522, May 2015.
|
[10] |
B. S. He, M. Tao, and X. M. Yuan, "Alternating direction method with gaussian back substitution for separable convex programming, " SIAM J. Optim. , vol. 22, no. 2, pp. 313-340, May 2012. http://www.researchgate.net/publication/265180890_ALTERNATING_DIRECTION_METHOD_WITH_GAUSSIAN_BACK_SUBSTITUTION_FOR_SEPARABLE_CONVEX_PROGRAMMING
|
[11] |
B. S. He, Z. Peng, and X. F. Wang, "Proximal alternating directionbased contraction methods for separable linearly constrained convex optimization, " Front. Math. China, vol. 6, no. 1, pp. 79-114, Jan. 2011. doi: 10.1007/s11464-010-0092-7
|
[12] |
D. Gabay, "Applications of the method of multipliers to variational inequalities, " in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, M. Fortin and R. Glowinski, Eds. Amsterdam: North-Holland, 1983, pp. 299-331. https://www.researchgate.net/publication/304533564_Applications_of_the_method_of_multipliers_to_variational_inequalities
|
[13] |
T. Goldstein and S. Osher, "The split Bregman method for L1-regularized problems, " SIAM J. Imaging Sci. , vol. 2, no. 2, pp. 323-343, Apr. 2009. https://www.researchgate.net/publication/301822646_The_Split_Bregman_method_for_L1_regularized_problems
|
[14] |
X. Q. Zhang, M. Burger, and S. Osher, "A unified primal-dual algorithm framework based on Bregman iteration, " J. Sci. Comput. , vol. 46, no. 1, pp. 20-46, Jan. 2011. doi: 10.1007/s10915-010-9408-8
|
[15] |
J. Barzilai and J. M. Borwein, "Two-point step size gradient methods, " IMA J. Numer. Anal. , vol. 8, no. 1, pp. 141-148, Jan. 1988.
|