A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 4
Oct.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Junbo Long, Haibin Wang, Peng Li and Hongshe Fan, "Applications of Fractional Lower Order Time-frequency Representation to Machine Bearing Fault Diagnosis," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 734-750, Oct. 2017. doi: 10.1109/JAS.2016.7510190
Citation: Junbo Long, Haibin Wang, Peng Li and Hongshe Fan, "Applications of Fractional Lower Order Time-frequency Representation to Machine Bearing Fault Diagnosis," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 734-750, Oct. 2017. doi: 10.1109/JAS.2016.7510190

Applications of Fractional Lower Order Time-frequency Representation to Machine Bearing Fault Diagnosis

doi: 10.1109/JAS.2016.7510190
Funds:

the National Natural Science Foundation of China 61261046

the National Natural Science Foundation of China 61362038

the Natural Science Foundation of Jiangxi Province 20142BAB207006

the Natural Science Foundation of Jiangxi Province 20151BAB207013

the Science and Technology Project of Provincial Education Department of Jiangxi Province GJJ14738

the Science and Technology Project of Provincial Education Department of Jiangxi Province GJJ14739

the Research Foundation of Health Department of Jiangxi Province 20175561

the Science and Technology Project of Jiujiang University 2016KJ001

the Science and Technology Project of Jiujiang University 2016KJ002

More Information
  • The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SαS distribution model because of the presence of impulses. Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order (FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform (FLO-STFT), fractional lower order Wigner-Ville distributions (FLO-WVDs), fractional lower order Cohen class time-frequency distributions (FLO-CDs), fractional lower order adaptive kernel time-frequency distributions (FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average (FLO-TFARMA) model time-frequency representation method. The methods and the exiting methods based on second order statistics in SαS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized. Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.

     

  • loading
  • [1]
    S. V. Narasimhan and S. Pavanalatha, "Estimation of evolutionary spectrum based on short time Fourier transform and modified group delay, " Signal Process. , vol. 84, no. 11, pp. 2139-2152, Nov. 2004. http://www.sciencedirect.com/science/article/pii/S0165168404001586
    [2]
    B. P. Tang, W. Y. Liu, and T. Song, "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution, " Renew. Energy, vol. 35, no. 12, pp. 2862-2866, Dec. 2010. http://www.sciencedirect.com/science/article/pii/S0960148110002302
    [3]
    Z. K. Peng, P. W. Tse, and F. L. Chu, "A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing, " Mechan. Syst. Signal Process. , vol. 19, no. 5, pp. 974-988, Sep. 2005. http://www.sciencedirect.com/science/article/pii/S0888327004000111
    [4]
    Z. P. Feng, M. Liang, and F. L. Chu, "Recent advances in timeCfrequency analysis methods for machinery fault diagnosis: A review with application examples, " Mechan. Syst. Signal Process. , vol. 38, no. 1, pp. 165-205, Jul. 2013.
    [5]
    J. H. Wang, L. Y. Qiao, Y. Q. Ye, and Y. Q. Chen, "Fractional Hilbert transform in rolling element bearings diagnostics, " in Proc. the 2015 Int. Symp. Fractional Signals and Systems, Romania, 2015, pp. 1-3. http://www.researchgate.net/publication/293657447_Fractional_Hilbert_transform_in_rolling_element_bearings_diagnostics
    [6]
    M. A. Al-Manie and W. J. Wang, "Time-frequency analysis by evolutionary periodogram with application in gear fault diagnosis, " Int. J. Wavelets, Multiresolut. Inf. Process. , vol. 8, no. 5, pp. 679-693, Apr. 2010. doi: 10.1142/S0219691310003742
    [7]
    G. M. Dong and J. Chen, "Noise resistant time frequency analysis and application in fault diagnosis of rolling element bearings, " Mechan. Syst. Signal Process. , vol. 33, pp. 212-236, Nov. 2012. http://www.sciencedirect.com/science/article/pii/S0888327012002439
    [8]
    R. G. Baraniuk and D. L. Jones, "Signal-dependent time-frequency analysis using a radially Gaussian kernel, " Signal Process. , vol. 32, no. 3, pp. 263-284, Jun. 1993. http://www.sciencedirect.com/science/article/pii/016516849390001Q
    [9]
    R. G. Baraniuk and D. L. Jones, "A signal-dependent time-frequency representation: optimal kernel design, " IEEE Trans. Signal Process. , vol. 41, no. 4, pp. 1589-1602, Apr. 1993.
    [10]
    R. N. Czerwinski and D. L. Jones, "Adaptive cone-kernel time-frequency analysis, " IEEE Trans. Signal Process. , vol. 43, no. 7, pp. 1715-1719, Jul. 1995. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=398735
    [11]
    D. S. Wu and J. M. Morris, "Time-frequency representations using a radial Butterworth kernel, " in Proc. the IEEE-SP Int. Symp. TimeFrequency and Time-Scale Analysis, Philadelphia, PA, USA, 1994, pp. 60-63. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=467364
    [12]
    S. C. Wang, J. Han, J. F. Li, and Z. N. Li, "Adaptive signal analysis based on radial parabola kernel, " Appl. Mechan. Mater. , vol. 10-12, pp. 737-741, Jan. 2008. doi: 10.4028/0-87849-470-7.737
    [13]
    H. Li, X. F. Liu, and L. Bo, "Chirplet time-frequency spectrum analysis of gear and rolling bearing fault, " J. Vib. Meas. Diagno. , vol. 31, no. 5, pp. 591-595, Oct. 2011. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDCS201105013.htm
    [14]
    S. C. Wang, J. Han, Z. N. Li, and J. F. Li, "Adaptive radial parabola kernel representation and its application in the fault diagnosis, " J. Mechan. Strength, vol. 29, no. 2, pp. 180-184, Nov. 2007. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXQD200702002.htm
    [15]
    D. F. Shi, F. Shen, M. Bao, and L. S. Qu, "Adaptive time-frequency analysis and its application in large rotating machinery diagnosis, " J. Vib. Eng. , vol. 13, no. 2, pp. 271-276, Jun. 2000. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDGC200002016.htm
    [16]
    M. Jachan, G. Matz, and F. Hlawatsch, "Time-frequency-autoregressive random processes: Modeling and fast parameter estimation, " in Proc. the 2003 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Hong Kong, China, 2003. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1201634
    [17]
    M. Jachan, G. Matz, and F. Hlawatsch, "Least-squares and maximumlikelihood TFAR parameter estimation for nonstationary processes, " in Proc. 2006 IEEE Int. Conf. Acoustics, Speech and Signal Processing, Toulouse, France, 2006. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1660698
    [18]
    M. Jachan, G. Matz, and F. Hlawatsch, "Vector time-frequency AR models for nonstationary multivariate random processes, " IEEE Trans. Signal Process. , vol. 57, no. 12, pp. 4646-4658, Dec. 2009. http://ieeexplore.ieee.org/document/5164974/
    [19]
    M. Jachan, G. Matz, and F. Hlawatsch, "Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes, " IEEE Trans. Signal Process. , vol. 55, no. 9, pp. 4366-4380, Sep. 2007. http://ieeexplore.ieee.org/document/4291858/
    [20]
    L. R. Padovese, "Hybrid timeCfrequency methods for non-stationary mechanical signal analysis, " Mechan. Syst. Signal Process. , vol. 18, no. 5, pp. 1047-1064, Sep. 2004. http://www.sciencedirect.com/science/article/pii/S0888327004000020
    [21]
    A. G. Poulimenos and S. D. Fassois, "Parametric time-domain methods for non-stationary random vibration modelling and analysisła critical survey and comparison, " Mechan. Syst. Signal Process. , vol. 20, no. 4, pp. 763-816, May 2006. http://www.sciencedirect.com/science/article/pii/S0888327005001688
    [22]
    M. Shao and C. L. Nikias, "Signal processing with fractional lower order moments: Stable processes and their applications, " Proc. the IEEE, vol. 81, no. 7, pp. 986-1010, Jul. 1993. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=231338
    [23]
    X. Y. Ma and C. L. Nikias, "Parameter estimation and blind channel identification in impulsive signal environments, " IEEE Trans. Signal Process. , vol. 43, no. 12, pp. 2884-2897, Dec. 1995. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=476432
    [24]
    T. H. Liu and J. M. Mendel, "A subspace-based direction finding algorithm using fractional lower order statistics, " IEEE Trans. Signal Process. , vol. 49, no. 8, pp. 1605-1613, Aug. 2001. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=934131
    [25]
    X. Y. Ma and C. L. Nikias, "Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics, " IEEE Trans. Signal Process. , vol. 44, no. 11, pp. 2669-2687, Nov. 1996. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=542175
    [26]
    C. N. Li and G. Yu, "A new statistical model for rolling element bearing fault signals based on Alpha-stable distribution, " in Proc. the 2nd Int. Conf. Computer Modeling and Simulation, Sanya, Hainan, China, 2010, pp. 386-390. http://ieeexplore.ieee.org/document/5421564/
    [27]
    X. M. Yu and T. Shu, "Fault diagnosis method for gearbox based on α-stable distribution parameters and support vector machines, " Meas. Control Technol. , vol. 31, no. 8, pp. 23-26, 30, Aug. 2012. http://en.cnki.com.cn/Article_en/CJFDTotal-IKJS201208008.htm
    [28]
    G. Yu, C. N. Li, and J. F. Zhang, "A new statistical modeling and detection method for rolling element bearing faults based on alphaCstable distribution, " Mechan. Syst. Signal Process. , vol. 41, no. 1-2, pp. 155-175, Dec. 2013. http://www.sciencedirect.com/science/article/pii/S0888327013003907
    [29]
    J. H. Wang, Y. Q. Ye, X. Pan, X. D. Gao, and C. Zhuang, "Fractional zero-phase filtering based on the RiemannCLiouville integral, " Signal Process. , vol. 98, pp. 150-157, May 2014. http://www.sciencedirect.com/science/article/pii/S016516841300460X
    [30]
    J. H. Wang, Y. Q. Ye, Y. B. Gao, S. Q. Qian, and X. D. Gao, "Fractional compound integral with application to ECG signal denoising, " Circuits Syst. Signal Process. , vol. 34, no. 6, pp. 1915-1930, Jun. 2015. doi: 10.1007/s00034-014-9931-1
    [31]
    J. H. Wang, Y. Q. Ye, X. Pan, and X. D. Gao, "Parallel-type fractional zero-phase filtering for ECG signal denoising, " Biomed. Signal Process. Control, vol. 18, pp. 36-41, Apr. 2015. http://www.sciencedirect.com/science/article/pii/S1746809414001621
    [32]
    CWRU, CWRU bearing data center, Accessed on: Sep. 25, 2015. [Online]. Available: http://csegroups.case.edu/bearingdatacenter/
    [33]
    S. Y. Wang and X. B. Zhu, "α spectrum estimation method for ARMA α process based on FLOC, " J. Commun. , vol. 28, no. 7, pp. 98-103, Jul. 2007. http://en.cnki.com.cn/Article_en/CJFDTotal-TXXB200707014.htm
    [34]
    M. Jachan, G. Matz, and F. Hlawatsch, "Time-frequency-movingaverage processes: Principles and cepstral methods for parameter estimation, " in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Montreal, Que. , Canada, 2004. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1326368

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (1252) PDF downloads(72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return