IEEE/CAA Journal of Automatica Sinica
Citation: | Amit S. Chopade, Swapnil W. Khubalkar, A.S. Junghare, M.V. Aware and Shantanu Das, "Design and Implementation of Digital Fractional Order PID Controller Using Optimal Pole-Zero Approximation Method for Magnetic Levitation System," IEEE/CAA J. Autom. Sinica, vol. 5, no. 5, pp. 977-989, Sept. 2018. doi: 10.1109/JAS.2016.7510181 |
[1] |
C. M. Lin, M. H. Lin, and C. W. Chen, "SoPC-based adaptive PID control system design for magnetic levitation system, " IEEE Syst. J. , vol. 5, no. 2, pp. 278-287, Jun. 2011. doi: 10.1109/JSYST.2011.2134530.
|
[2] |
H. K. Chiang, C. A. Chen, and M. Y. Li, "Integral variable-structure grey control for magnetic levitation system, " IEE Proc. Electric Power Appl. , vol. 153, no. 6, pp. 809-814, Nov. 2006. doi: 10.1049/ip-epa:20060056.
|
[3] |
Z. J. Yang, K. Kunitoshi, S. Kanae, and K. Wada, "Adaptive robust output-feedback control of a magnetic levitation system by K-filter approach, " IEEE Trans. Industr. Electron. , vol. 55, no. 1, pp. 390-399, Jan. 2008. doi: 10.1109/TIE.2007.896488.
|
[4] |
R. Morales, V. Feliu, and H. Sira-Ramírez, "Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain, " IEEE Trans. Control Syst. Technol. , vol. 19, no. 4, pp. 757-771, Jul. 2011. doi: 10.1109/TCST.2010.2057511.
|
[5] |
C. M. Lin, Y. L. Liu, and H. Y. Li, "SoPC-based function-link cerebellar model articulation control system design for magnetic ball levitation systems, " IEEE Trans. Industr. Electron. , vol. 61, no. 8, pp. 4265-4273, Aug. 2014. doi: 10.1109/TIE.2013.2288201.
|
[6] |
A. El Hajjaji and M. Ouladsine, "Modeling and nonlinear control of magnetic levitation systems, " IEEE Trans. Industr. Electron. , vol. 48, no. 4, pp. 831-838, Aug. 2001. doi: 10.1109/41.937416.
|
[7] |
C. A. Kluever, Dynamic Systems: Modeling, Simulation, and Control. Hoboken, NJ, USA: John Wiley and Sons, 2015.
|
[8] |
G. F. Franklin, J. D. Powell, and A. Emami-Naeni, Feedback Control of Dynamic Systems, 3rd ed., Reading, MA, USA: Addison-Wesley, 1994.
|
[9] |
T. H. Wong, "Design of a magnetic levitation control system: an undergraduate project, " IEEE Trans. Educ. , vol. E-29, no. 4, pp. 196-200, Nov. 1986. doi: 10.1109/TE.1986.5570565.
|
[10] |
R. Sinha and M. L. Nagurka, "Analog and labview-based control of a maglev system with NI-ELVIS, " in Proc. ASME Int. Mechanical Engineering Congr. Expo. , Orlando, Florida, USA, 2005, pp. 741-746.
|
[11] |
S. Saha, S. Das, R. Ghosh, B. Goswami, R. Balasubramanian, A. K. Chandra, and A. Gupta, "Design of a fractional order phase shaper for Iso-damped control of a PHWR under step-back condition, " IEEE Trans. Nucl. Sci. , vol. 57, no. 3, pp. 1602-1612, Jun. 2010. doi: 10.1109/TNS.2010.2047405.
|
[12] |
S. Das, S. Das, and A. Gupta, "Fractional order modeling of a PHWR under step-back condition and control of its global power with a robust PIλDμ controller, " IEEE Trans. Nucl. Sci. , vol. 58, no. 5, pp. 2431-2441, Oct. 2011. doi: 10.1109/TNS.2011.2164422.
|
[13] |
S. Saha, S. Das, R. Ghosh, B. Goswami, R. Balasubramanian, A. K. Chandra, S. Das, and A. Gupta, "Fractional order phase shaper design with Bodeś integral for iso-damped control system, " ISA Trans. , vol. 49, no. 2, pp. 196-206, Apr. 2010. doi: 10.1016/j.isatra.2009.12.001.
|
[14] |
S. Das, "Fuel efficient nuclear reactor control, " in Proc. Int. Conf. Nuclear Engineering, Beijing, China, 2005.
|
[15] |
K. J. Aström and T. Hägglund, PID Controllers: Theory, Design and Tuning, 2nd ed. Triangle Park, NC, USA: Instrument Society of America, 1995.
|
[16] |
I. Podlubny, Fractional Differential Equations, New York, NY, USA: Academic Press, 1999.
|
[17] |
S. Das, Functional Fractional Calculus for System Identification and Controls, Berlin, Heidelberg, Germany: Springer Science and Business Media, 2008. doi: 10.1007/978-3-540-72703-3.
|
[18] |
I. Podlubny, "Fractional-order systems and PIλDμ controllers, " IEEE Trans. Automat. Control, vol. 44, no. 1, pp. 208-214, Jan. 1999. doi: 10.1109/9.739144.
|
[19] |
A. Charef, H. H. Sun, Y. Y. Tsao, and B. Onaral, "Fractal system as represented by singularity function, " IEEE Trans. Automat. Control, vol. 37, no. 9, pp. 1465-1470, Sep. 1992. doi: 10.1109/9.159595.
|
[20] |
A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, "Frequency-band complex noninteger differentiator: characterization and synthesis, " IEEE Trans. Circuits Syst. I Fundam. Theory Appl. , vol. 47, no. 1, pp. 25-39, Jan. 2000. doi: 10.1109/81.817385.
|
[21] |
Feedback Instruments Ltd., "Magnetic levitation control experiments, " East Susses, UK, Feedback Part No. 1160-33942S, 2006.
|
[22] |
R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach, New York, NY, USA: Wiley-IEEE Press, 2012.
|
[23] |
C. Yeroglu and N. Tan, "Note on fractional-order proportional-integraldifferential controller design, " IET Control Theory Appl. , vol. 5, no. 17, pp. 1978-1989, Nov. 2011. doi: 10.1049/iet-cta.2010.0746.
|
[24] |
D. Valerio and J. S. da Costa, "Introduction to single-input, single-output fractional control, " IET Control Theory Appl. , vol. 5, no. 8, pp. 1033-1057, May 2011. doi: 10.1049/iet-cta.2010.0332.
|
[25] |
D. L. Chen, Y. Q. Chen, and D. Y. Xue, "Digital fractional order Savitzky-Golay differentiator, " IEEE Trans. Circuits Syst. Ⅱ Express Briefs, vol. 58, no. 11, pp. 758-762, Nov. 2011. doi: 10.1109/TCSⅡ.2011.2168022.
|
[26] |
M. Ö. Efe, "Fractional order systems in industrial automation: a survey, " IEEE Trans. Industr. Inf. , vol. 7, no. 4, pp. 582-591, Nov. 2011. doi: 10.1109/TⅡ.2011.2166775.
|
[27] |
J. A. T. Machado, "Discrete-time fractional-order controllers, " Fract. Calc. Appl. Anal. , vol. 4, no. 1, pp. 47-66, Jan. 2001.
|
[28] |
A. S. Dhabale, R. Dive, M. V. Aware, and S. Das, "A new method for getting rational approximation for fractional order differintegrals, " Asian J. Control, vol. 17, no. 6, pp. 2143-2152, Nov. 2015. doi: 10.1002/asjc.1148.
|
[29] |
Y. Q. Chen and K. L. Moore, "Discretization schemes for fractionalorder differentiators and integrators, " IEEE Trans. Circuits Syst. I Fundam. Theory Appl. , vol. 49, no. 3, pp. 363-367, Mar. 2002. doi: 10.1109/81.989172.
|
[30] |
I. Pan and S. Das, "Gain and order scheduling for fractional order controllers, " in Intelligent Fractional Order Systems and Control, I. Pan and S. Das, Eds. Berlin, Heidelberg, Germany: Springer, 2013, pp. 147-157. doi: 10.1007/978-3-642-31549-76.
|
[31] |
I. Petráš, "Fractional-order feedback control of a DC motor, " J. Electr. Eng. , vol. 60, no. 3, pp. 117-128, Mar. 2009.
|
[32] |
S. Cuoghi and L. Ntogramatzidis, "Direct and exact methods for the synthesis of discrete-time proportional-integral-derivative controllers, " IET Control Theory Appl. , vol. 7, no. 18, pp. 2164-2171, Dec. 2013. doi: 10.1049/iet-cta.2013.0064.
|
[33] |
Y. Q. Chen, I. Petras, and D. Y. Xue, "Fractional order control-a tutorial, " in Proc. American Control Conf. , St. Louis, MO, USA, 2009, pp. 1397-1411. doi: 10.1109/ACC.2009.5160719.
|
[34] |
Y. Jin, Y. Q. Chen, and D. Xue, "Time-constant robust analysis of a fractional order[proportional derivative] controller, " IET Control Theory Appl. , vol. 5, no. 1, pp. 164-172, Jan. 2011. doi: 10.1049/iet-cta.2009.0543.
|
[35] |
C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Q. Chen, "Tuning and autotuning of fractional order controllers for industry applications, " Control Eng. Pract. , vol. 16, no. 7, pp. 798-812, Jul. 2008. doi: 10.1016/j.conengprac.2007.08.006.
|
[36] |
J. P. Zhong and L. C. Li, "Tuning fractional-order PIλDμ controllers for a solid-core magnetic bearing system, " IEEE Trans. Control Syst. Technol. , vol. 23, no. 4, pp. 1648-1656, Jul. 2015. doi: 10.1109/TCST.2014.2382642.
|
[37] |
F. Padula and A. Visioli, "Optimal tuning rules for proportionalintegral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes, " IET Control Theory Appl. , vol. 6, no. 6, pp. 776-786, Apr. 2012. doi: 10.1049/iet-cta.2011.0419.
|
[38] |
S. Das, S. Saha, S. Das, and A. Gupta, "On the selection of tuning methodology of FOPID controllers for the control of higher order processes, " ISA Trans. , vol. 50, no. 3, pp. 376-388, Jul. 2011. doi: 10.1016/j.isatra.2011.02.003.
|
[39] |
S. Das, I. Pan, S. Das, and A. Gupta, "A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices, " Eng. Appl. Artif. Intell. , vol. 25, no. 2, pp. 430-442, Mar. 2012. doi: 10.1016/j.engappai.2011.10.004.
|
[40] |
S. Das, I. Pan, S. Das, and A. Gupta, "Improved model reduction and tuning of fractional-order PIλDμ controllers for analytical rule extraction with genetic programming, " ISA Trans. , vol. 51, no. 2, pp. 237-261, Mar. 2012. doi: 10.1016/j.isatra.2011.10.004.
|
[41] |
S. Das, I. Pan, K. Halder, S. Das, and A. Gupta, "LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index, " Appl. Math. Model. , vol. 37, no. 6, pp. 4253-4268, Mar. 2013. doi: 10.1016/j.apm.2012.09.022.
|
[42] |
S. Das, I. Pan, and S. Das, "Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time, " ISA Trans. , vol. 52, no. 4, pp. 550-566, Jul. 2013. doi: 10.1016/j.isatra.2013.03.004.
|
[43] |
S. Das, I. Pan, S. Das, and A. Gupta, "Master-slave chaos synchronization via optimal fractional order PIλDμ controller with bacterial foraging algorithm, " Nonlinear Dyn. , vol. 69, no. 4, pp. 2193-2206, Sep. 2012. doi: 10.1007/s11071-012-0419-x.
|
[44] |
S. Saha, S. Das, S. Das, and A. Gupta, "A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement, " Commun. Nonlinear Sci. Numer. Simul. , vol. 17, no. 9, pp. 3628-3642, Sep. 2012. doi: 10.1016/j.cnsns.2012.01.007.
|
[45] |
S. Das, I. Pan, K. Halder, S. Das, and A. Gupta, "Impact of fractional order integral performance indices in LQR based PID controller design via optimum selection of weighting matrices, " in Proc. 2012 IEEE Int. Conf. Computer Communication and Informatics, Coimbatore, India, 2012, pp. 1-6. doi: 10.1109/ICCCI.2012.6158892.
|
[46] |
S. Das, I. Pan, S. Das, and A. Gupta, "Genetic algorithm based improved sub-optimal model reduction in nyquist plane for optimal tuning rule extraction of PID and PIλDμ controllers via genetic programming, " in Proc. 2011 IEEE Int. Conf. Process Automation, Control and Computing, Coimbatore, India, 2011, pp. 1-6. doi: 10.1109/PACC.2011.5978962.
|
[47] |
A. Rajasekhar, S. Das, and A. Abraham, "Fractional order PID controller design for speed control of chopper fed DC motor drive using artificial bee colony algorithm, " in Proc. 2013 World Congr. Nature and Biologically Inspired Computing, Fargo, ND, USA, 2013, pp. 269-266. doi: 10.1109/NaBIC.2013.6617873.
|
[48] |
R. R. Song and Z. L. Chen, "Design of PID controller for maglev system based on an improved PSO with mixed inertia weight, " J. Netw. , vol. 9, no. 6, pp. 1509-1517, Jan. 2014. doi: 10.4304/jnw.9.6.1509-1517.
|
[49] |
A. Q. H. Badar, B. S. Umre, and A. S. Junghare, "Reactive power control using dynamic particle swarm optimization for real power loss minimization, " Int. J. Electr. Power Energy Syst. , vol. 41, no. 1, pp. 133-136, Oct. 2012. doi: 10.1016/j.ijepes.2012.03.030.
|