IEEE/CAA Journal of Automatica Sinica
Citation: | J. Yu, Q. Li, and W. Zhou, “Nonlinear robust stabilization of ship roll by convex optimization,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp. 1714–1716, Jul. 2024. doi: 10.1109/JAS.2016.7510163 |
[1] |
Y. Yang, C. Zhou, and X. Jia, “Robust adaptive fuzzy control and its application to ship roll stabilization,” Information Science, vol. 142, no. 1–4, pp. 177–194, 2002. doi: 10.1016/S0020-0255(02)00165-2
|
[2] |
M. A. Hinostroza, W. Luo, and C. G. Soares, “Robust fin control for ship roll stabilization based on L2-gain design,” Ocean Engineering, vol. 94, pp. 126–131, 2015. doi: 10.1016/j.oceaneng.2014.11.010
|
[3] |
W. Luo, W. Lv, and Z. Zou, “Robust fin control for ship stabilization by using functional-link neural networks,” Lecture Notes in Computer Science, vol. 7952, pp. 228–237, 2013.
|
[4] |
M. Moradi and H. Malekizade, “Robust adaptive first-second-order sliding mode control to stabilize the uncertain fin-roll dynamic,” Ocean Engineering, vol. 69, pp. 18–23, 2013. doi: 10.1016/j.oceaneng.2013.05.003
|
[5] |
A. Isidori, Nonlinear Control Systems, 3rd ed. New York, USA: Springer, 1995.
|
[6] |
I. M. Krstic, Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design. New York, USA: John Wiley and Sons, Inc., 1995.
|
[7] |
A. Ataei-Esfahani and Q. Wang, “Nonlinear control design of a hypersonic aircraft using sum-of-squares method,” in Proc. American Control Conf., New York, USA, 2007, pp. 5278–5283.
|
[8] |
J. Yu, C. K. Ahn, and P. Shi, “Event-triggered bipartite consensus for fuzzy multiagent systems under Markovian switching signed topology,” IEEE Trans. Fuzzy Systems, vol. 30, no. 7, pp. 2610–2620, 2022. doi: 10.1109/TFUZZ.2021.3089740
|
[9] |
F. Pozo and J. Rodellar, “Robust stabilization of polynomial systems with uncertain parameters,” Int. J. System Science, vol. 41, no. 5, pp. 575–584, 2010. doi: 10.1080/00207720903141426
|
[10] |
Q. Zheng and F. Wu, “Nonlinear H∞ control designs with axisymmetric spacecraft control,” J. Guidance, Control and Dynamics, vol. 32, no. 3, pp. 850–859, 2009. doi: 10.2514/1.40060
|
[11] |
A. Rantzer, “A dual to Lyapunov’s stability theorem,” System and Control Letters, vol. 42, no. 3, pp. 161–168, 2001. doi: 10.1016/S0167-6911(00)00087-6
|
[12] |
Y. Yang and X. Jia, Robust Control for Uncertain Systems and its Applications. Dalian, China: Dalian Maritime University, 2003.
|
[13] |
Y. Zhang, W. Shi, and M. Qiu, “Sliding backstepping control for fin stabilizer with nonlinear disturbance observer,” Control and Decision, vol. 25, no. 8, pp. 1255–1260, 2010.
|
[14] |
P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization,” Ph.D. dissertation, California Institute of Technology, Pasadena, USA, 2000.
|
[15] |
S. Prajna, P. A. Parrilo, and A. Rantzer, “Nonlinear control synthesis by convex optimization,” IEEE Trans. Autom. Control, vol. 49, no. 2, pp. 310–314, 2004. doi: 10.1109/TAC.2003.823000
|
[16] |
S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOSTOOLS: A general purpose sum of squares programming solver,” in Proc. 41st Conf. Decision and Control, Las Vegas, USA, 2002, pp. 741–746.
|
[17] |
G. Stengle, “A nullstellensatz and a positiv stellensatz in semialgebraic geometry,” Mathematische Annalen, vol. 207, no. 2, pp. 87–97, 1974. doi: 10.1007/BF01362149
|
[18] |
Y. Yang and B. Jiang, “Variable structure robust fin control for ship roll stabilization with actuator system,” in Proc. American Control Conf., Boston, USA, 2004, pp. 5212–5217.
|