IEEE/CAA Journal of Automatica Sinica
Citation: | Matheus J. Lazo and DelfimF.M. Torres, "Variational Calculus With Conformable Fractional Derivatives," IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 340-352, Apr. 2017. doi: 10.1109/JAS.2016.7510160 |
[1] |
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies). Amsterdam: Elsevier Science, 2006.
|
[2] |
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley-Interscience, 1993.
|
[3] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. San Diego, CA: Academic Press, Inc., 1999.
|
[4] |
J. T. Machado, V. Kiryakova, and F. Mainardi, "Recent history of fractional calculus, " Commun. Nonlinear Sci. Numer. Simul. , vol. 16, no. 3, pp. 1140-1153, Mar. 2011. http://www.sciencedirect.com/science/article/pii/S1007570410003205
|
[5] |
R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, "A new definition of fractional derivative, " J. Comput. Appl. Math. , vol. 264, pp. 65-70, Jul. 2014. http://www.sciencedirect.com/science/article/pii/S0377042714000065
|
[6] |
T. Abdeljawad, "On conformable fractional calculus, " J. Comput. Appl. Math. , vol. 279, pp. 57-66, May2015. http://www.sciencedirect.com/science/article/pii/S0377042714004622
|
[7] |
D. R. Anderson and R. I. Avery, "Fractional-order boundary value problem with Sturm-Liouville boundary conditions, " Electron. J. Diff. Equ. , vol. 2015, no. 29, pp. 10, Jan. 2015. http://www.wenkuxiazai.com/doc/6d8cb0076c85ec3a87c2c5c2.html
|
[8] |
H. Batarfi, J. Losada, J. J. Nieto, and W. Shammakh, "Three-point boundary value problems for conformable fractional differential equations, " J. Funct. Spaces, vol. 2015, Article ID 706383, 2015. http://www.sciencedirect.com/science/article/pii/S0898122103000981
|
[9] |
B. Bayour and D. F. M. Torres, "Existence of solution to a local fractional nonlinear differential equation, " J. Comput. Appl. Math. , vol. 312, pp. 127--133, Mar. 2017.
|
[10] |
N. Benkhettou, S. Hassani, and D. F. M. Torres, "A conformable fractional calculus on arbitrary time scales, " J. King Saud Univ. Sci. , vol. 28, no. 1, pp. 93-98, Jan. 2016. http://www.sciencedirect.com/science/article/pii/S1018364715000464
|
[11] |
F. Riewe, "Mechanics with fractional derivatives, " Phys. Rev. E, vol. 55, no. 3, pp. 3581-3592, Mar. 1997. http://adsabs.harvard.edu/abs/1997PhRvE..55.3581R
|
[12] |
P. S. Bauer, "Dissipative dynamical systems. I, " Proc. Natl. Acad. Sci. USA, vol. 17, pp. 311-314, Jun. 1931. doi: 10.1007%2FBF00276493
|
[13] |
O. P. Agrawal, "Formulation of Euler-Lagrange equations for fractional variational problems, " J. Math. Anal. Appl. , vol. 272, no. 1, pp. 368-379, Aug. 2002. http://www.sciencedirect.com/science/article/pii/S0022247X02001804
|
[14] |
R. Almeida and D. F. M. Torres, "Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, " Commun. Nonlinear Sci. Numer. Simul. , vol. 16, no. 3, pp. 1490-1500, 2011. http://philosophy.wisc.edu/hausman/341/Skill/nec-suf.htm
|
[15] |
D. Baleanu and O. P. Agrawal, "Fractional Hamilton formalism within Caputo's derivative, " Czechoslovak J. Phys. , vol. 56, no. 10-11, pp. 1087-1092, Oct. 2006. doi: 10.1007/s10582-006-0406-x
|
[16] |
J. Cresson, "Fractional embedding of differential operators and Lagrangian systems, " J. Math. Phys. , vol. 48, no. 3, pp. 033504, Mar. 2007. doi: 10.1063/1.2483292
|
[17] |
M. J. Lazo and D. F. M. Torres, "The DuBois-Reymond fundamental lemma of the fractional calculus of variations and an Euler-Lagrange equation involving only derivatives of Caputo, " J. Optim. Theory Appl. , vol. 156, no. 1, pp. 56-67, Jan. 2013. doi: 10.1007/s10957-012-0203-6
|
[18] |
T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Fractional variational calculus with classical and combined Caputo derivatives, " Nonlinear Anal. , vol. 75, no. 3, pp. 1507-1515, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0362546X11000113
|
[19] |
T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Fractional calculus of variations in terms of a generalized fractional integral with applications to physics, " Abstr. Appl. Anal. , vol. 2012, Article ID 871912, 2012. https://www.hindawi.com/journals/aaa/2012/871912/
|
[20] |
R. Almeida, S. Pooseh, and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations. London: Imperial College Press, 2015.
|
[21] |
A. B. Malinowska, T. Odzijewicz, and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations. New York: Springer International Publishing, 2015.
|
[22] |
A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations. London: Imperial College Press, 2012.
|
[23] |
M. J. Lazo and C. E. Krumreich, "The action principle for dissipative systems, " J. Math. Phys. , vol. 55, no. 12, pp. 122902, 2014. doi: 10.1063/1.4903991
|
[24] |
J. D. Logan, Invariant Variational Principles. Vol.138. Mathematics in Science and Engineering. New York, San Francisco, Lindon: Academic Press, 1977.
|
[25] |
D. F. M. Torres, "Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations, " Commun. Pure Appl. Anal. , vol. 3, no. 3, pp. 491-500, Sep. 2004. https://www.researchgate.net/publication/280005301_Proper_extensions_of_Noether%27s_symmetry_theorem_for_nonsmooth_extremals_of_the_calculus_of_variations
|
[26] |
G. S. F. Frederico and D. F. M. Torres, "Non-conservative Noether's theorem for fractional action-like variational problems with intrinsic and observer times, " Int. J. Ecol. Econ. Stat. , vol. 9, no. F07, pp. 74-82, Nov. 2007. http://www.academia.edu/2372009/Non-conservative_Noethers_theorem_for_fractional_action-like_variational_problems_with_intrinsic_and_observer_times
|
[27] |
G. S. F. Frederico and D. F. M. Torres, "A formulation of Noether's theorem for fractional problems of the calculus of variations, " J. Math. Anal. Appl. , vol. 334, no. 2, pp. 834-846, Oct. 2007. http://www.sciencedirect.com/science/article/pii/S0022247X07000340
|
[28] |
G. S. F. Frederico and D. F. M. Torres, "Fractional conservation laws in optimal control theory, " Nonlinear Dyn. , vol. 53, no. 3, pp. 215-222, Aug. 2008. doi: 10.1007/s11071-007-9309-z
|
[29] |
G. S. F. Frederico and D. F. M. Torres, "Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, " Int. Math. Forum, vol. 3, no. 10, pp. 479-493, Sep. 2008. http://www.wenkuxiazai.com/doc/e6c1f7fec8d376eeaeaa31f2-2.html
|
[30] |
G. S. F. Frederico and D. F. M. Torres, "Fractional Noether's theorem in the Riesz-Caputo sense, " Appl. Math. Comput. , vol. 217, no. 3, pp. 1023-1033, Oct. 2010. http://www.sciencedirect.com/science/article/pii/S0096300310001244
|
[31] |
N. Benkhettou, A. M. C. Brito Da Cruz, and D. F. M. Torres, "A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration, " Signal Proc. , vol. 107, pp. 230-237, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0165168414002448
|
[32] |
N. Benkhettou, A. M. C. Brito da Cruz, and D. F. M. Torres, "Nonsymmetric and symmetric fractional calculi on arbitrary nonempty closed sets, " Math. Methods Appl. Sci. , vol. 39, no. 2, pp. 261-279, Jan. 2016. http://www.oalib.com/paper/3941045
|
[33] |
W. Sarlet and F. Cantrijn, "Generalizations of Noether's theorem in classical mechanics, " SIAM Rev. , vol. 23, no. 4, pp. 467-494, 1981. doi: 10.1137/1023098
|
[34] |
G. S. F. Frederico and D. F. M. Torres, "Nonconservative Noether's theorem in optimal control, " Int. J. Tomogr. Stat. , vol. 5, no. W07, pp. 109-114, 2007. http://www.academia.edu/2372000/Nonconservative_Noethers_theorem_in_optimal_control
|
[35] |
D. F. M. Torres, "On the Noether theorem for optimal control, " Eur. J. Control, vol. 8, no. 1, pp. 56-63, 2002.
|
[36] |
D. F. M. Torres, "Conservation laws in optimal control, " in Dynamics, Bifurcations, and Control, vol. 273, F. Colonius and L Grüne, Eds. Berlin: Springer, 2002, pp. 287-296.
|
[37] |
D. F. M. Torres, "Quasi-invariant optimal control problems, " Port. Math. , vol. 61, no. 1, pp. 97-114, 2004. https://archive.org/details/arxiv-math0302264
|
[38] |
S. Pooseh, R. Almeida, and D. F. M. Torres, "Fractional order optimal control problems with free terminal time, " J. Ind. Manag. Optim. , vol. 10, no. 2, pp. 363-381, Apr. 2014. doi: 10.1186/s13662-016-0976-2
|
[39] |
D. S. Dukić, "Noether's theorem for optimum control systems, " Int. J. Control, vol. 18, no. 3, pp. 667-672, Jul. 1973. doi: 10.1080/00207177308932544
|
[40] |
A. S. Balankin, J. Bory-Reyes, and M. Shapiro, "Towards a physics on fractals: differential vector calculus in three-dimensional continuum with fractal metric, " Phys. A, vol. 444, pp. 345-359, Feb. 2016. http://www.sciencedirect.com/science/article/pii/S037843711500881X
|