IEEE/CAA Journal of Automatica Sinica
Citation: | Min Xiao, Guoping Jiang, Jinde Cao and Weixing Zheng, "Local Bifurcation Analysis of a Delayed Fractional-order Dynamic Model of Dual Congestion Control Algorithms," IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 361-369, Apr. 2017. doi: 10.1109/JAS.2016.7510151 |
[1] |
B. I. Henry and S. L. Wearne, "Existence of Turing instabilities in a two-species fractional reaction-diffusion system, " SIAM J. Appl. Math. , vol. 62, no. 3, pp. 870-887, Feb. 2002. doi: 10.1137/S0036139900375227
|
[2] |
N. Engheia, "On the role of fractional calculus in electromagnetic theory, " IEEE Antennas Propag. Mag. , vol. 39, no. 4, pp. 35-46, Aug. 1997. http://ieeexplore.ieee.org/document/632994/
|
[3] |
N. Heymans and J. C. Bauwens, "Fractal rheological models and fractional differential equations for viscoelastic behavior, " Rheol. Acta, vol. 33, no. 3, pp. 210-219, May1994. doi: 10.1007/BF00437306
|
[4] |
H. Sun, A. Abdelwahab, and B. Onaral, "Linear approximation of transfer function with a pole of fractional power, " IEEE Trans. Automat. Control, vol. 29, no. 5, pp. 441-444, May1984. https://www.mathworks.com/help/slcontrol/ug/linearize.html
|
[5] |
D. Baleanu, J. A. T. Machado, and A. C. J. Luo, " Fractional Dynamics and Control. Berlin: Springer, 2012.
|
[6] |
V. D. Djordjević, J. Jarić, B. Fabry, J. J. Fredberg, and D. Stamenović, "Fractional derivatives embody essential features of cell rheological behavior, " Ann. Biomed. Eng. , vol. 31, no. 6, pp. 692-699, Jun. 2003. doi: 10.1114/1.1574026
|
[7] |
Y. H. Lim, K. K. Oh, and H. S. Ahn, "Stability and stabilization of fractional-order linear systems subject to input saturation, " IEEE Trans. Automat. Control, vol. 58, no. 4, pp. 1062-1067, Apr. 2013. http://ieeexplore.ieee.org/document/6246678/
|
[8] |
M. Xiao, W. X. Zheng, G. P. Jiang, and J. D. Cao, "Undamped oscillations generated by Hopf bifurcations in fractional-order recurrent neural networks with Caputo derivative, " IEEE Trans. Neural Networks Learn. Syst. , vol. 26, no. 12, pp. 3201-3214, Dec. 2015. https://www.semanticscholar.org/paper/Undamped-Oscillations-Generated-by-Hopf-Xiao-Zheng/3efc5b73a1229987be63a910c61682ba16cf7917
|
[9] |
T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, "Chaos in a fractional order Chua's system, " IEEE Trans. Circuits Syst. Ⅰ Fund. Theory Appl. , vol. 42, no. 8, pp. 485-490, Aug. 1995. http://ieeexplore.ieee.org/document/404062/
|
[10] |
I. N'Doye, H. Voos, and M. Darouach, "Observer-based approach for fractional-order chaotic synchronization and secure communication, " IEEE J. Emerg. Sel. Topics Circuits Syst. , vol. 3, no. 3, pp. 442-450, Sep. 2013. http://ieeexplore.ieee.org/document/6669423/
|
[11] |
A. Papachristodoulou and A. Jadbabaie, "Delay robustness of nonlinear Internet congestion control schemes, " IEEE Trans. Automat. Control, vol. 55, no. 6, pp. 1421-1427, Jun. 2010. http://ieeexplore.ieee.org/document/5422746/
|
[12] |
J. Barrera and A. Garcia, "Dynamic incentives for congestion control, " IEEE Trans. Automat. Control, vol. 60, no. 2, pp. 299-310, Feb. 2015. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6879269
|
[13] |
X. Zhang and A. Papachristodoulou, "Improving the performance of network congestion control algorithms, " IEEE Trans. Automat. Control, vol. 60, no. 2, pp. 522-527, Feb. 2015. http://ieeexplore.ieee.org/iel7/9/4601496/06849427.pdf?arnumber=6849427
|
[14] |
F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, "Rate control for communication networks: shadow prices, proportional fairness and stability, " J. Oper. Res. Soc. , vol. 49, no. 3, pp. 237-252, Mar. 1998.
|
[15] |
Y. P. Zhang and D. Loguinov, "Local and global stability of delayed congestion control systems, " IEEE Trans. Automat. Control, vol. 53, no. 10, pp. 2356-2360, Nov. 2008. http://ieeexplore.ieee.org/document/4668502/
|
[16] |
P. Ranjan, R. J. La, and E. H. Abed, "Global stability conditions for rate control with arbitrary communication delays, " IEEE/ACM Trans. Network. , vol. 14, no. 1, pp. 94-107, Feb. 2006. http://www.academia.edu/412465/Global_Stability_Conditions_for_Rate_Control_With_Arbitrary_Communication_Delays
|
[17] |
M. L. Sichitiu and P. H. Bauer, "Asymptotic stability of congestion control systems with multiple sources, " IEEE Trans. Automat. Control, vol. 51, no. 2, pp. 292-298, Feb. 2006. http://ieeexplore.ieee.org/document/1593903/
|
[18] |
Y. P. Tian, "Stability analysis and design of the second-order congestion control for networks with heterogeneous delays, " IEEE/ACM Trans. Network. , vol. 13, no. 5, pp. 1082-1093, Oct. 2005. http://ieeexplore.ieee.org/iel5/90/32642/01528496.pdf?arnumber=1528496
|
[19] |
G. Raina, "Local bifurcation analysis of some dual congestion control algorithms, " IEEE Trans. Automat. Control, vol. 50, no. 8, pp. 1135-1146, Aug. 2005. http://www.amm.shu.edu.cn/CN/abstract/abstract10711.shtml
|
[20] |
C. G. Li, G. R. Chen, X. F. Liao, and J. B. Yu, "Hopf bifurcation in an Internet congestion control model, " Chaos Solitons Fractals, vol. 19, no. 4, pp. 853-862, Mar. 2004. http://www.sciencedirect.com/science/article/pii/S0960077903002698
|
[21] |
M. Xiao, W. X. Zheng, and J. D. Cao, "Bifurcation control of a congestion control model via state feedback, " Int. J. Bifurc. Chaos, vol. 23, no. 6, pp. 1330018, Jun. 2013. doi: 10.1142/S0218127413300188
|
[22] |
W. Y. Xu, J. D. Cao, and M. Xiao, "Bifurcation analysis of a class of (n+1)-dimension Internet congestion control systems, " Int. J. Bifurc. Chaos, vol. 25, no. 2, pp. 1550019, Feb. 2015. http://or.nsfc.gov.cn/handle/00001903-5/334670
|
[23] |
D. W. Ding, J. Zhu, X. S. Luo, and Y. L. Liu, "Delay induced Hopf bifurcation in a dual model of Internet congestion control algorithm, " Nonlinear Anal. Real World Appl. , vol. 10, no. 5, pp. 2873-2883, Oct. 2009. http://www.sciencedirect.com/science/article/pii/S1468121808001983
|
[24] |
M. Xiao, G. P. Jiang, and L. D. Zhao, "State feedback control at Hopf bifurcation in an exponential RED algorithm model, " Nonlinear Dyn. , vol. 76, no. 2, pp. 1469-1484, Apr. 2014. https://www.researchgate.net/publication/271740392_State_feedback_control_at_Hopf_bifurcation_in_an_exponential_RED_algorithm_model
|
[25] |
F. Liu F, H. O. Wang, and Z. H. Guan, "Hopf bifurcation control in the XCP for the Internet congestion control system, " Nonlinear Anal. Real World Appl. , vol. 13, no. 3, pp. 1466-1479, Jun. 2012. http://www.sciencedirect.com/science/article/pii/S146812181100318X
|
[26] |
M. Xiao and J. D. Cao, "Delayed feedback-based bifurcation control in an Internet congestion model, " J. Math. Anal. Appl. , vol. 332, no. 2, pp. 1010-1027, Aug. 2007. http://www.sciencedirect.com/science/article/pii/S0022247X06012157
|
[27] |
I. Podlubny, Fractional Differential Equations. New York: Academic Press, 1999.
|
[28] |
G. Q. Chen and E. G. Friedman, "An RLC interconnect model based on fourier analysis, " IEEE Trans. Comp. Aided Des. Integr. Circuits Syst. , vol. 24, no. 2, pp. 170-183, Feb. 2005. http://dl.acm.org/citation.cfm?id=2298529.2301127
|
[29] |
V. G. Jenson and G. V. Jeffreys, Mathematical Methods in Chemical Engineering. 2nd ed. New York: Academic Press, 1977.
|
[30] |
R. L. Magin, "Fractional calculus models of complex dynamics in biological tissues, " Comput. Math. Appl. , vol. 59, no. 5, pp. 1586-1593, Mar. 2010. http://www.sciencedirect.com/science/article/pii/S0898122109005343
|
[31] |
N. Laskin, "Fractional market dynamics, " Phys. A, vol. 287, no. 3-4, pp. 482-492, Dec. 2000. http://www.sciencedirect.com/science/article/pii/S0378437100003873
|
[32] |
W. H. Deng, C. P. Li, and J. H. Lü, "Stability analysis of linear fractional differential system with multiple time delays, " Nonlinear Dyn. , vol. 48, no. 4, pp. 409-416, Jun. 2007. doi: 10.1007%2Fs11071-006-9094-0
|
[33] |
D. Matignon, "Stability results for fractional differential equations with applications to control processing, " in Multiconference: Computational Engineering in Systems and Application, Lille, France, 1996, pp. 963-968. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.4859
|
[34] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory. New York: Springer-Verlag, 2004.
|
[35] |
H. A. El-Saka, E. Ahmed, M. I. Shehata, and A. M. A. El-Sayed, "On stability, persistence, and Hopf bifurcation in fractional order dynamical systems, " Nonlinear Dyn. , vol. 56, no. 1-2, pp. 121-126, Jul. 2008. doi: 10.1007/s11071-008-9383-x
|
[36] |
M. S. Abdelouahab, N. E. Hamri, and J. W. Wang, "Hopf bifurcation and chaos in fractional-order modified hybrid optical system, " Nonlinear Dyn. , vol. 69, no. 1-2, pp. 275-284, Jul. 2012. doi: 10.1007%2Fs11071-011-0263-4
|
[37] |
S. S. Kunniyur and R. Srikant, "Stable, scalable, fair congestion control and AQM schemes that achieve high utilization in the Internet, " IEEE Trans. Automat. Control, vol. 48, no. 11, pp. 2024-2028, Nov. 2003. http://ieeexplore.ieee.org/document/1245195/
|
[38] |
S. Liu, T. Basar, and R. Srikant, "Exponential-RED: a stabilizing AQM scheme for low-and high-speed TCP protocols, " IEEE/ACM Trans. Network. , vol. 13, no. 5, pp. 1068-1081, Oct. 2005. http://ieeexplore.ieee.org/document/1528495/
|
[39] |
P. Ranjan, E. H. Abed, and R. J. La, "Nonlinear instabilities in TCP-RED, " IEEE/ACM Trans. Network. , vol. 12, no. 6, pp. 1079-1092, Dec. 2004. http://dl.acm.org/citation.cfm?id=1046023
|
[40] |
F. Kelly, "Fairness and stability of end-to-end congestion control, " Eur. J. Control, vol. 9, no. 2-3, pp. 159-176, 2003. http://www.statslab.cam.ac.uk/~frank/PAPERS/fse2ecc.html
|
[41] |
D. W. Ding, X. M. Qin, N. Wang, T. T. Wu, and D. Liang, "Hybrid control of Hopf bifurcation in a dual model of Internet congestion control system, " Nonlinear Dyn. , vol. 76, no. 2, pp. 1041-1050, Apr. 2014. doi: 10.1007/s11071-013-1187-y
|
[42] |
S. Bhalekar and V. Daftardar-Gejji, "A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, " J. Fract. Calculus Appl. , vol. 1, no. 5, pp. 1-9, Jul. 2011. https://www.researchgate.net/publication/282942655_A_Predictor-Corrector_Scheme_for_Solving_a_Nonlinear_Circuit
|