A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 4
Oct.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Geng Wang, Guoqiang Chen, Hong Zhou and Fuzhong Bai, "Modeling and Tracking Control for Piezoelectric Actuator Based on a New Asymmetric Hysteresis Model," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 782-791, Oct. 2017. doi: 10.1109/JAS.2016.7510136
Citation: Geng Wang, Guoqiang Chen, Hong Zhou and Fuzhong Bai, "Modeling and Tracking Control for Piezoelectric Actuator Based on a New Asymmetric Hysteresis Model," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 782-791, Oct. 2017. doi: 10.1109/JAS.2016.7510136

Modeling and Tracking Control for Piezoelectric Actuator Based on a New Asymmetric Hysteresis Model

doi: 10.1109/JAS.2016.7510136
Funds:

the National Natural Science Foundation of China 51505133

the National Natural Science Foundation of China 61108038

the Doctoral Science Foundation of Henan Polytechnic University 60407/010

Chunhui Program of Ministry of Education of China Z2011069

More Information
  • This paper presents a new asymmetric hysteresis model and its application in the tracking control of piezoelectric actuators. The proposed model is based on a coupled-play operator which can avoid the conventional Prandtl-Ishlinskii (CPI) model's defects, i.e., the symmetric property. The high accuracy for modeling asymmetric hysteresis is validated by comparing simulation results with experimental measurements. In order to further evaluate the performance of the proposed model in closed-loop tracking application, two different hybrid control methods which experimentally demonstrate their performance under the same operating conditions, are compared to validate that the hybrid control strategy with proposed hysteresis model can mitigate the hysteresis more effectively and achieve better tracking precision. The experimental results demonstrate that the proposed modeling and tracking control strategy can realize efficient control of piezoelectric actuator.

     

  • loading
  • Recommended by Associate Editor Junfei Qiao
  • [1]
    T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, "Highspeed multiresolution scanning probe microscopy based on lissajous scan trajectories, " Nanotechnology, vol. 23, no. 18, pp. 185501, May 2012. http://europepmc.org/abstract/MED/22516658
    [2]
    C. Braunsmann and T. E. Schäffer, "High-speed atomic force microscopy for large scan sizes using small cantilevers, " Nanotechnology, vol. 21, no. 22, pp. 225705, Jun. 2010. http://www.ncbi.nlm.nih.gov/pubmed/20453273
    [3]
    G. Wang, C. L. Guan, X. J. Zhang, H. Zhou, and C. H. Rao, "Design and control of miniature piezoelectric actuator based on strain gauge sensor, " Opt. Precis. Eng. , vol. 21, no. 3, pp. 709-716, Mar. 2013. http://www.ncbi.nlm.nih.gov/pubmed/20453273
    [4]
    K. W. Chae, W. B. Kim, and Y. H. Jeong, "A transparent polymeric flexure-hinge nanopositioner, actuated by a piezoelectric stack actuator, " Nanotechnology, vol. 22, no. 33, pp. 335501, Aug. 2011. http://europepmc.org/abstract/MED/21788690
    [5]
    T. Ruppel, W. Osten, and O. Sawodny, "Model-based feedforward control of large deformable mirrors, " Eur. J. Control, vol. 17, no. 3, pp. 261-272, 2011. doi: 10.3166/ejc.17.261-272
    [6]
    G. Wang, C. L. Guan, X. J. Zhang, H. Zhou, and C. H. Rao, "Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model, " Opt. Laser Technol. , vol. 57, pp. 26-31, Apr. 2014. http://www.sciencedirect.com/science/article/pii/S0030399213003216
    [7]
    G. Wang and C. H. Rao, "Adaptive control of piezoelectric fast steering mirror for high precision tracking application, " Smart Mater. Struct. , vol. 24, no. 3, pp. 035019, Mar. 2015. doi: 10.1088/0964-1726/24/3/035019
    [8]
    S. H. Xiang, S. H. Chen, X. Wu, D. Xiao, and X. W. Zheng, "Study on fast linear scanning for a new laser scanner, " Opt. Laser Technol. , vol. 42, no. 1, pp. 42-46, Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0030399209000784
    [9]
    G. Tao and P. V. Kokotovic, "Adaptive control of plants with unknown hystereses, " IEEE Trans. Automat. Control, vol. 40, no. 2, pp. 200-212, Feb. 1995. http://ieeexplore.ieee.org/document/341778/
    [10]
    H. Hu and R. B. Mrad, "On the classical Preisach model for hysteresis in piezoceramic actuators, " Mechatronics, vol. 13, no. 2, pp. 85-94, Mar. 2003. http://www.sciencedirect.com/science/article/pii/S0957415801000435
    [11]
    K. Furutani, M. Urushibata, and N. Mohri, "Improvement of control method for piezoelectric actuator by combining induced charge feedback with inverse transfer function compensation, " in Proc. 1998 IEEE International Conf. Robotics and Automation, Leuven, Belgium, vol. 2, pp. 1504-1509, 1998. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=677325
    [12]
    J. Y. Peng and X. B. Chen, "Integrated PID-based sliding mode state estimation and control for piezoelectric actuators, " IEEE/ASME Trans. Mechatron. , vol. 19, no. 1, pp. 88-99, Feb. 2014. http://ieeexplore.ieee.org/document/6341845/
    [13]
    Q. S. Xu and M. P. Jia, "Model reference adaptive control with perturbation estimation for a micropositioning system, " IEEE Trans. Control Syst. Technol. , vol. 22, no. 1, pp. 352-359, Jan. 2014. http://ieeexplore.ieee.org/document/6475995/
    [14]
    Y. Chen, J. Qiu, and H. Sun, "A hybrid model of prandtl-ishlinskii operator and neural network for hysteresis compensation in piezoelectric actuators, " Int. J. Appl. Electrom. Mech. , vol. 41, no. 3, pp. 335-347, Mar. 2013. doi: 10.3233/JAE-131648
    [15]
    J. J. Tzen, S. L. Jeng, and W. H. Chieng, "Modeling of piezoelectric actuator for compensation and controller design, " Precis. Eng. , vol. 27, no. 1, pp. 70-86, Jan. 2003. http://www.sciencedirect.com/science/article/pii/S0141635902001836
    [16]
    G. Lee, K. You, T. Kang, K. J. Yoon, J. O. Lee, and J. K. Park, "Modeling and design of H-infinity controller for piezoelectric actuator lipca, " J. Bionic Eng. , vol. 7, no. 2, pp. 168-174, Jun. 2010. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jbej201002008&dbname=CJFD&dbcode=CJFQ
    [17]
    G. Karer, G. MušIč, I. Škrjanc, and B. Zupančič, "Feedforward control of a class of hybrid systems using an inverse model, " Math. Comput. Simul. , vol. 82, no. 3, pp. 414-427, Nov. 2011. http://www.sciencedirect.com/science/article/pii/S0378475410003228
    [18]
    L. L. Cao, Y. Li, G. H. Tian, B. D. Liu, and Y. Q. Chen, "Time domain analysis of the fractional order weighted distributed parameter maxwell model, " Comput. Math. Appl. , vol. 66, no. 5, p. 813-823, Sep. 2013. http://www.sciencedirect.com/science/article/pii/S0898122112006876
    [19]
    Y. K. Ma, X. N. Zhang, M. L. Xu, and S. L. Xie, "Hybrid model based on Preisach and support vector machine for novel dual-stack piezoelectric actuator, " Mech. Syst. Signal. Process. , vol. 34, no. 1-2, pp. 156-172, Jan. 2013. http://www.sciencedirect.com/science/article/pii/S0888327012002336
    [20]
    C. J. Lin and P. T. Lin, "Tracking control of a biaxial piezo-actuated positioning stage using generalized duhem model, " Comput. Math. Appl. , vol. 64, no. 5, pp. 766-787, Sep. 2012. http://dl.acm.org/citation.cfm?id=2351053
    [21]
    W. Zhu, L. X. Bian, and X. T. Rui, "Online parameter identification of the asymmetrical Bouc-Wen model for piezoelectric actuators, " Precis. Eng. , vol. 38, no. 4, pp. 921-927, Oct. 2014. http://www.sciencedirect.com/science/article/pii/S0141635914000981
    [22]
    C. H. Ru, L. G. Chen, B. Shao, W. B. Rong, and L. N. Sun, "A hysteresis compensation method of piezoelectric actuator: Model, identification and control, " Control Eng. Pract. , vol. 17, no. 9, pp. 1107-1114, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0967066109000926
    [23]
    K. Kuhnen and H. Janocha, "Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems, " Control Intell. Syst., vol. 29, no. 3, pp. 74-83, 2001. http://www.mendeley.com/catalog/inverse-feedforward-controller-complex-hysteretic-nonlinearities-smartmaterial-systems/
    [24]
    P. Krejci and K. Kuhnen, "Inverse control of systems with hysteresis and creep, " IEE Proc. Control Theory Appl., vol. 148, no. 3, pp. 185-192, 2001. doi: 10.1049/ip-cta:20010375
    [25]
    K. Kuhnen and H. Janocha, "Adaptive inverse control of piezoelectric actuators with hysteresis operators, " in Proc. 1999 European Control Conf. , Karlsruhe, Germany, 1999, pp. 791-796. http://ieeexplore.ieee.org/document/7099402/
    [26]
    K. Kuhnen, "Modeling, identification and compensation of complex hysteretic nonlinearities:A modified prandtl-ishlinskii approach, " Eur. J. Control, vol. 9, no. 4, pp. 407-418, 2003. doi: 10.3166/ejc.9.407-418
    [27]
    H. Jiang, H. L. Ji, J. H. Qiu, and Y. S. Chen, "A modified PrandtlIshlinskii model for modeling asymmetric hysteresis of piezoelectric actuators, " IEEE Trans. Ultrason., Ferroelectr. Freq. Control, vol. 57, no. 5, pp. 1200-1210, May 2010. doi: 10.1109/TUFFC.2010.1533
    [28]
    M. Al Janaideh, S. Rakheja, and C. Y. Su, "A generalized PrandtlIshlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators, " Smart Mater. Struct. , vol. 18, no. 4, pp. 045001, Mar. 2009. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009SMaS...18d5001J&db_key=PHY&link_type=ABSTRACT
    [29]
    L. X. Zhang, C. H. Wang, and L. J. Chen, "Stability and stabilization of a class of multimode linear discrete-time systems with polytopic uncertainties, " IEEE Trans. Ind. Electron. , vol. 56, no. 9, pp. 3684-3692, Sep. 2009. http://ieeexplore.ieee.org/document/5156278/
    [30]
    L. X. Zhang, "H estimation for discrete-time piecewise homogeneous markov jump linear systems, " Automatica, vol. 45, no. 11, pp. 2570-2576, Nov. 2009. http://www.ams.org/mathscinet-getitem?mr=2889314
    [31]
    L. X. Zhang, N. G. Cui, M. Liu, and Y. Zhao, "Asynchronous filtering of discrete-time switched linear systems with average dwell time, " IEEE Trans. Circuits Syst. I Regul. Pap., vol. 58, no. 5, pp. 1109-1118, May 2011. doi: 10.1109/TCSI.2010.2092151
    [32]
    X. K. Chen, T. Hisayama, and C. Y. Su, "Adaptive control for uncertain continuous-time systems using implicit inversion of prandtl-ishlinskii hysteresis representation, " IEEE Trans. Automat. Control, vol. 55, no. 10, pp. 2357-2363, Oct. 2010. http://ieeexplore.ieee.org/document/5491113/

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (831) PDF downloads(63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return