IEEE/CAA Journal of Automatica Sinica
Citation: | S. He, K. Sun, and H. Wang, “Dynamics of the fractional-order Lorenz system based on Adomian decomposition method and its DSP implementation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1298–1300, May 2024. doi: 10.1109/JAS.2016.7510133 |
[1] |
I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Phys. Rev. Lett., vol. 91, no. 3, p. 34101, 2003. doi: 10.1103/PhysRevLett.91.034101
|
[2] |
I. Grigorenko and E. Grigorenko, “Erratum: Chaotic dynamics of the fractional Lorenz system [Phys. Rev. Lett. 91, 034101(2003)],” Phys. Rev. Lett, vol. 96, no. 19, p. 199902, 2006. doi: 10.1103/PhysRevLett.96.199902
|
[3] |
H. Jia, Z. Chen, and W. Xue, “Analysis and circuit implementation for the fractional-order Lorenz system,” Acta Phys. Sin., vol. 62, no. 14, p. 140503, 2013. doi: 10.7498/aps.62.140503
|
[4] |
A. Charef, H. Sun, Y. Tsao, et al., “Fractal system as represented by singularity function,” IEEE Trans. Auto. Cont., vol. 37, no. 9, pp. 1465–1470, 1992. doi: 10.1109/9.159595
|
[5] |
M. Wang, G. Sun, and Y. Wei, “Limitations of frequency domain approximation in the calculation of fractional order chaotic systems,” J. Herbin,Initit. Tech., vol. 43, no. 5, pp. 8–12, 2011.
|
[6] |
F. Sadiki, K. Rasimi, A. Ibraimi, et al., “Approaches developed to solve fractional differential equations,” J. EJENS-Eur. J. Eng. Nat. Sci., vol. 8, p. 83, 2023.
|
[7] |
K. Sun, X. Wang, and J. C. Sprott, “Bifurcations and chaos in fractional-order simplified Lorenz system,” Inter. J. Bifur. Chaos, vol. 20, no. 4, pp. 1209–1219, 2010. doi: 10.1142/S0218127410026411
|
[8] |
R. Li and W. Chen, “Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems,” Nonlinear Dyn., vol. 76, no. 1, pp. 785–795, 2014. doi: 10.1007/s11071-013-1169-0
|
[9] |
S. He, K. Sun, and H. Wang, “Solving of fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analyses,” Acta Phys. Sin., vol. 63, no. 3, p. 30502, 2014. doi: 10.7498/aps.63.030502
|
[10] |
G. Adomian, “A review of the decomposition method and some recent results for nonlinear equations,” Math. Comp. Model., vol. 13, no. 7, pp. 17–43, 1990. doi: 10.1016/0895-7177(90)90125-7
|
[11] |
D. Cafagna and G. Grassi, “Bifurcation and chaos in the fractionalorder Chen system via a time-domain approach,” Int. J. Bifur. Chaos, vol. 18, no. 7, pp. 1845–1863, 2008. doi: 10.1142/S0218127408021415
|
[12] |
R. Caponetto and S. Fazzino, “An application of Adomian decomposition for analysis of fractional-order chaotic systems,” Inter. J. Bifur. Chaos, vol. 23, no. 3, p. 1350050, 2013. doi: 10.1142/S0218127413500508
|
[13] |
H. Cao, R. Chu, and Y. Cui, “Complex dynamical characteristics of the fractional-order cellular neural network and its DSP implementation,” Fractal and Fractional, vol. 7, no. 8, p. 633, 2023. doi: 10.3390/fractalfract7080633
|
[14] |
D. Peng, K. Sun, S. He, et al., “What is the lowest order of the fractional-order chaotic systems to behave chaotically?” Chaos,Soliton Fract., vol. 119, pp. 163–170, 2019. doi: 10.1016/j.chaos.2018.12.022
|
[15] |
D. Matignon, “Stability results for fractional differential equations with applications to control processing,” Comp. Eng. Sys. Appl., pp. 963–968, 1997.
|
[16] |
L. Li, H. Peng, Q. Luo, et al., “Problem and analysis of stability decidable theory for a class of fractional order nonlinear system,” Acta Phys. Sin., vol. 62, no. 2, p. 20502, 2013. doi: 10.7498/aps.62.020502
|
[17] |
M. S. Tavazoei and M. Haeri, “A proof for non existence of periodic solutions in time invariant fractional order systems,” Automatica, vol. 45, no. 8, pp. 1886–1890, 2009. doi: 10.1016/j.automatica.2009.04.001
|