IEEE/CAA Journal of Automatica Sinica
Citation: | Shuyi Shao and Mou Chen, "Fractional-Order Control for a Novel Chaotic System Without Equilibrium," IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1000-1009, June 2019. doi: 10.1109/JAS.2016.7510124 |
[1] |
E. N. Lorenz, "Deterministic nonperiodic flow, " J. Atmospheric Sciences, vol. 20, no. 2, pp. 130-141, 1963. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
[2] |
O. E. Rössler, "An equation for continuous chaos, " Physics Letters A, vol. 57, no. 5, pp. 397-398, 1976. doi: 10.1016/0375-9601(76)90101-8
|
[3] |
C. X. Liu, T. Liu, L. Liu, and K. Liu, "A new chaotic attractor, " Chaos, Solitons & Fractals, vol. 22, no. 5, pp. 1031-1038, 2004. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0704.3174
|
[4] |
Y. X. Li, W. K. S. Tang, and G. R. Chen, "Generating hyperchaos via state feedback control, " Int. J. Bifurcation and Chaos, vol. 15, no. 10, pp. 3367-3375, 2005. doi: 10.1142/S0218127405013988
|
[5] |
A. M. Chen, J. N. Lu, J. H. Lv, and S. M. Yu, "Generating hyperchaotic Lü attractor via state feedback control, " Physica A: Statistical Mechanics and Its Applications, vol. 364, pp. 103-110, 2006. doi: 10.1016/j.physa.2005.09.039
|
[6] |
W. C. Chen, "Nonlinear dynamics and chaos in a fractional-order financial system, " Chaos, Solitons & Fractals, vol. 36, no. 5, pp. 1305-1314, 2008. http://www.sciencedirect.com/science/article/pii/S0960077906007946
|
[7] |
S. Das and P. K. Gupta, "A mathematical model on fractional Lotka-Volterra equations, " J. Theoretical Biology, vol. 277, no. 1, pp. 1-6, 2011. doi: 10.1016/j.jtbi.2011.01.034
|
[8] |
X. Y. Wang and J. M. Song, "Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, " Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3351-3357, 2009. doi: 10.1016/j.cnsns.2009.01.010
|
[9] |
L. Liu, D. L. Liang, and C. X. Liu, "Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system, " Nonlinear Dynamics, vol. 69, no. 4, pp. 1929-1939, 2012. doi: 10.1007/s11071-012-0397-z
|
[10] |
S. Jafari, J. C. Sprott, and S. M. R. H. Golpayegani, "Elementary quadratic chaotic flows with no equilibria, " Physics Letters A, vol. 377, no. 9, pp. 699-702, 2013. doi: 10.1016/j.physleta.2013.01.009
|
[11] |
V. T. Pham, C. Volos, S. Jafari, Z. C. Wei, and X. Wang, "Constructing a novel no-equilibrium chaotic system, " Int. J. Bifurcation and Chaos, vol. 24, no. 5, pp. 1450073, 2014. doi: 10.1142/S0218127414500734
|
[12] |
X. Wang and G. R. Chen, "Constructing a chaotic system with any number of equilibria, " Nonlinear Dynamics, vol. 71, no. 3, pp. 429-436, 2013. doi: 10.1007/s11071-012-0669-7
|
[13] |
V. T. Pham, F. Rahma, M. Frasca, and L. Fortuna, "Dynamics and synchronization of a novel hyperchaotic system without equilibrium, " Int. J. Bifurcation and Chaos, vol. 24, no. 6, pp. 1450087, 2014. doi: 10.1142/S0218127414500874
|
[14] |
L. M. Pecora and T. L. Carroll, "Synchronization in chaotic systems, " Physical Review Letters, vol. 64, no. 8, pp. 821-824, 1990. doi: 10.1103/PhysRevLett.64.821
|
[15] |
T. L. Carroll and L. M. Pecora, "Synchronizing chaotic circuits, " IEEE Trans. Circuits and Systems, vol. 38, no. 4, pp. 453-456, 1991. doi: 10.1109/31.75404
|
[16] |
G. R. Chen and X. H. Yu, Chaos Control: Theory and Applications, Berlin Heidelberg: Springer, 2003.
|
[17] |
J. M. González-Miranda, Synchronization and Control of Chaos: an Introduction for Scientists and Engineers. London: Imperial College Press, 2004.
|
[18] |
S. K. Yang, C. L. Chen, and H. T. Yau, "Control of chaos in Lorenz system, " Chaos, Solitons & Fractals, vol. 13, no. 4, pp. 767-780, 2002. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1b83de48ae95b1c0a1adb1b3cee04d76
|
[19] |
J. M. Nazzal and A. N. Natsheh, "Chaos control using sliding-mode theory, " Chaos, Solitons & Fractals, vol. 33, no. 2, pp. 695-702, 2007. http://d.old.wanfangdata.com.cn/Periodical/zzqgyxy201402025
|
[20] |
N. Cai, Y. W. Jing, and S. Y. Zhang, "Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, " Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 6, pp. 1613-1620, 2010. doi: 10.1016/j.cnsns.2009.06.012
|
[21] |
M. Sun, L. X. Tian, S. M. Jiang, and J. Xu, "Feedback control and adaptive control of the energy resource chaotic system, " Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1725-1734, 2007. http://www.sciencedirect.com/science/article/pii/S0960077905012129
|
[22] |
M. T. Yassen, "Chaos control of chaotic dynamical systems using backstepping design, " Chaos, Solitons & Fractals, vol. 27, no. 2, pp. 537-548, 2006. http://www.sciencedirect.com/science/article/pii/S0960077905003516
|
[23] |
C. C. Hua, X. P. Guan, and P. Shi, "Adaptive feedback control for a class of chaotic systems, " Chaos, Solitons & Fractals, vol. 23, no. 3, pp. 757-765, 2005. http://www.sciencedirect.com/science/article/pii/S096007790400284X
|
[24] |
R. Z. Luo and Y. H. Zeng, "The adaptive control of unknown chaotic systems with external disturbance via a single input, " Nonlinear Dynamics, vol. 80, no. 1-2, pp. 989-998, 2015. doi: 10.1007/s11071-015-1923-6
|
[25] |
M. P. Aghababa and B. Hashtarkhani, "Synchronization of unknown uncertain chaotic systems via adaptive control method, " J. Computational and Nonlinear Dynamics, vol. 10, no. 5, pp. 051004, 2015. doi: 10.1115/1.4027976
|
[26] |
S. G. Gao, H. R. Dong, and B. Ning, "Neural adaptive control of uncertain chaotic systems with input and output saturation, " Nonlinear Dynamics, vol. 80, no. 1-2, pp. 375-385, 2015. doi: 10.1007/s11071-014-1875-2
|
[27] |
W. X. Xie, C. Y. Wen, and Z. G. Li, "Impulsive control for the stabilization and synchronization of Lorenz systems, " Physics Letters A, vol. 275, no. 1-2, pp. 67-72, 2000. doi: 10.1016/S0375-9601(00)00584-3
|
[28] |
I. N'Doye, H. Voos, and M. Darouach, "Observer-based approach for fractional-order chaotic synchronization and secure communication, " IEEE J. Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 3, pp. 442-450, 2013. doi: 10.1109/JETCAS.2013.2265792
|
[29] |
L. W. Deng and S. M. Song, "Synchronization of fractional order hyperchaotic systems based on output feedback sliding mode control, " Acta Automatica Sinica, vol. 40, no. 11, pp. 2420-2427, 2014.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201411004
|
[30] |
Y. Xu, H. Wang, Y. G. Li, and B. Pei, "Image encryption based on synchronization of fractional chaotic systems, " Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 10, pp. 3735- 3744, 2014. doi: 10.1016/j.cnsns.2014.02.029
|
[31] |
A. Oustaloup, J. Sabatier, and P. Lanusse, "From fractal robustness to the CRONE control, " Fractional Calculus and Applied Analysis, vol. 2, no. 1, pp. 1-30, 1999. https://www.researchgate.net/publication/265365863_From_fractal_robustness_to_the_CRONE_control
|
[32] |
I. Podlubny, "Fractional-order systems and ${{PI}^\lambda}{D^\mu}$-controller, " IEEE Trans. Automatic Control, vol. 44, no. 1, pp. 208-214, 1999. doi: 10.1109/9.739144
|
[33] |
T. Z. Li, Y. Wang, and M. K. Luo, "Control of fractional chaotic and hyperchaotic systems based on a fractional order controller, " Chinese Physics B, vol. 23, no. 8, pp. 80501, 2014. doi: 10.1088/1674-1056/23/8/080501
|
[34] |
N. N. Son and H. P. H. Anh, "Adaptive backstepping self-balancing control of a two-wheel electric scooter, " Int. J. Advanced Robotic Systems, DOI: 10.5772/59100, 2014.
|
[35] |
I. Podlubny, Fractional Differential Equations. London: Academic Press, 1999.
|
[36] |
Y. Li, Y. Q. Chen, and I. Podlubny, "Mittag-Leffler stability of fractional order nonlinear dynamic systems, " Automatica, vol. 45, no. 8, pp. 1965- 1969, 2009. doi: 10.1016/j.automatica.2009.04.003
|
[37] |
S. J. Sadati, D. Baleanu, A. Ranjbar, R. Ghaderi, and T. Abdeljawad, "Mittag-Leffler stability theorem for fractional nonlinear systems with delay, " Abstract and Applied Analysis, vol. 2010, pp. Article ID 108651, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000800776
|
[38] |
S. Liu, X. Y. Li, W. Jiang, and X. F. Zhou, "Mittag-Leffler stability of nonlinear fractional neutral singular systems, " Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 10, pp. 3961- 3966, 2012. doi: 10.1016/j.cnsns.2012.02.012
|
[39] |
D. L. Qian, C. P. Li, R. P. Agarwal, and P. J. Y. Wong, "Stability analysis of fractional differential system with Riemann-Liouville derivative, " Mathematical and Computer Modelling, vol. 52, no. 5-6, pp. 862-874, 2010. doi: 10.1016/j.mcm.2010.05.016
|
[40] |
F. R. Zhang and C. P. Li, "Stability analysis of fractional differential systems with order lying in (1, 2), " Advances in Difference Equations, vol. 2011, pp. Article ID 213485, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3cedf51638269d64bbd9c19c0558532a
|
[41] |
Z. Q. Qin, R. C. Wu, and Y. F. Lu, "Stability analysis of fractional-order systems with the Riemann-Liouville derivative, " Systems Science & Control Engineering, vol. 2, no. 1, pp. 727-731, 2014. doi: 10.1080/21642583.2013.877857
|
[42] |
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. New York: Elsevier, 2006.
|
[43] |
L. P. Chen, Y. G. He, Y. Chai, and R. C. Wu, "New results on stability and stabilization of a class of nonlinear fractional-order systems, " Nonlinear Dynamics, vol. 75, no. 4, pp. 633-641, 2014. doi: 10.1007/s11071-013-1091-5
|
[44] |
H. P. Ye, J. M. Gao, and Y. S. Ding, "A generalized Gronwall inequality and its application to a fractional differential equation, " J. Mathematical Analysis and Applications, vol. 328, no. 2, pp. 1075-1081, 2007. doi: 10.1016/j.jmaa.2006.05.061
|
[45] |
Z. B. Wu and Y. Z. Zou, "Global fractional-order projective dynamical systems, " Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 8, pp. 2811-2819, 2014. doi: 10.1016/j.cnsns.2014.01.007
|
[46] |
S. M. Yu, Chaotic Systems and Chaotic Circuits: Principle, Design and its Application in Communications. Xi'an: Xidian University Press, 2011. (in Chinese)
|
[47] |
X. J. Wen, Z. M. Wu, and J. G. Lu, "Stability analysis of a class of nonlinear fractional-order systems, " IEEE Trans. Circuits and Systems Ⅱ: Express Briefs, vol. 55, no. 11, pp. 1178-1182, 2008. doi: 10.1109/TCSII.2008.2002571
|
[48] |
C. C. Hua and X. P. Guan, "Adaptive control for chaotic systems, " Chaos, Solitons & Fractals, vol. 22, no. 1, pp. 55-60, 2004. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_11305037bd0324ec3040c06438da85c5
|
[49] |
L. P. Liu, Z. Z. Han, and W. L. Li, "Global sliding mode control and application in chaotic systems, " Nonlinear Dynamics, vol. 56, no. 1-2, pp. 193-198, 2009. doi: 10.1007/s11071-008-9391-x
|
[50] |
Q. Jia, "Hyperchaos generated from the Lorenz chaotic system and its control, " Physics Letters A, vol. 366, no. 3, pp. 217-222, 2007. doi: 10.1016/j.physleta.2007.02.024
|
[51] |
I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Berlin Heidelberg: Springer-Verlag, 2011.
|