A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 4
Jul.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Yong Ren and Weiwei Sun, "Robust Adaptive Control for Robotic Systems With Input Time-Varying Delay Using Hamiltonian Method," IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 852-859, July 2018. doi: 10.1109/JAS.2016.7510055
Citation: Yong Ren and Weiwei Sun, "Robust Adaptive Control for Robotic Systems With Input Time-Varying Delay Using Hamiltonian Method," IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 852-859, July 2018. doi: 10.1109/JAS.2016.7510055

Robust Adaptive Control for Robotic Systems With Input Time-Varying Delay Using Hamiltonian Method

doi: 10.1109/JAS.2016.7510055
Funds:

the National Natural Science Foundation of China 61703232

the Natural Science Foundation of Shandong Province ZR2017MF068

the Natural Science Foundation of Shandong Province ZR2017QF013

More Information
  • This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the robotic systems. Firstly, with the idea of shaping potential energy and the pre-feedback skill, the n degree-of-freedom (DOF) uncertain robotic systems are realized as an augmented dissipative Hamiltonian formulation with delay. Secondly, based on the obtained Hamiltonian system formulation and by using of the Lyapunov-Krasovskii (L-K) functional method, an adaptive controller is designed to show that the robotic systems can be asymptotically stabilized depending on the input delay. Meanwhile, some sufficient conditions are spelt out to guarantee the rationality and validity of the proposed control law. Finally, study of an illustrative example with simulations shows that the controller obtained in this paper works very well in handling uncertainties and input delay in the robotic systems.

     

  • loading
  • [1]
    R. J. Anderson and W. M. Spong, "Bilateral control of teleoperators with time delay, " IEEE Trans. Autom. Control, vol. 34, no. 5, pp. 494-501, May 1989. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=24201
    [2]
    P. H. Chang, D. S. Kim, and K. C. Park, "Robust force/position control of a robot manipulator using time-delay control, " Control Eng. Pract., vol. 3, no. 9, pp. 1255-1264, Sep. 1995. http://www.sciencedirect.com/science/article/pii/096706619500124D
    [3]
    Y. Kang, Z. J. Li, X. Q. Cao, and D. H. Zhai, "Robust control of motion/force for robotic manipulators with random time delays, " IEEE Trans. Control Syst. Technol., 2013, vol. 21, no. 5, pp. 1708-1718, Sep. 2013. http://ieeexplore.ieee.org/document/6355966/
    [4]
    M. Lazarević, "Finite time stability analysis of PDα fractional control of robotic time-delay systems, " Mech. Res. Commun., vol. 33, no. 2, pp. 269-279, Mar. -Apr. 2006. http://www.sciencedirect.com/science/article/pii/S0093641305001102
    [5]
    Y. C. Liu and N. Chopra, "Control of robotic manipulators under input/output communication delays: theory and experiments, " IEEE Trans. Rob., vol. 28, no. 3, pp. 742-751, Jun. 2012. http://ieeexplore.ieee.org/document/6152159/
    [6]
    N. Sharma, S. Bhasin, Q. Wang, and W. E. Dixon, "Predictor-based control for an uncertain Euler-Lagrange system with input delay, " Automatica, vol. 47, no. 11, pp. 2332-2342, Nov. 2011. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5531212
    [7]
    Y. N. Yang, C. C. Hua, and X. P. Guan, "Synchronization control for bilateral teleoperation system with prescribed performance under asymmetric time delay, " Nonlinear Dyn., vol. 81, no. 1-2, pp. 481-493, Jul. 2015. doi: 10.1007%2Fs11071-015-2006-4
    [8]
    M. Chen, B. Jiang, and X. R. Cui, "Robust control for rigid robotic manipulators using nonlinear disturbance observer, " Int. J. Rob. Autom., vol. 29, no. 3, pp. 305-311, Jun. 2014. doi: 10.2316/Journal.206.2014.3.206-4072
    [9]
    Z. P. Jiang and H. Nijmeijer, "Tracking control of mobile robots: a case study in backstepping, " Automatica, vol. 33, no. 7, pp. 1393-1399, Jul. 1997. http://www.sciencedirect.com/science/article/pii/S0005109897000551
    [10]
    E. Kim, "Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic, " IEEE Trans Fuzzy Syst., vol. 12, no. 3, pp. 368-378, Jun. 2004. http://dl.acm.org/citation.cfm?id=2235179
    [11]
    H. R. Koofigar, "Adaptive tracking with external force disturbance rejection for uncertain robotic systems, " Int. J. Control Autom. Syst., vol. 12, no. 1, pp. 169-176, Feb. 2014. doi: 10.1007/s12555-011-0098-2
    [12]
    R. Ortega and W. M. Spong, "Adaptive motion control of rigid robots: a tutorial, " Automatica, vol. 25, no. 6, pp. 877-888, Nov. 1989. http://dl.acm.org/citation.cfm?id=87011
    [13]
    M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. New York, USA: Wiley, 2005.
    [14]
    G. W. Zeng and A. Hemami, "An overview of robot force control, " Robotica, vol. 15, no. 5, 473-482, Sep. 1997. http://dialnet.unirioja.es/servlet/articulo?codigo=439759
    [15]
    R. Akmeliawati and Y. M. I. Mareels, "Nonlinear energy-based control method for aircraft automatic landing systems, " IEEE Trans. Control Syst. Technol., vol. 18, no. 4, pp. 871-884, Jul. 2010. http://ieeexplore.ieee.org/document/5286235/
    [16]
    W. W. Sun and B. Z. Fu, "Adaptive control of time-varying uncertain nonlinear systems with input delay: a Hamiltonian approach, " IET Control Theo. & Appl., vol. 10, no. 15, pp. 1844-1858, Oct. 2016. http://ieeexplore.ieee.org/document/7579880/
    [17]
    I. Fantoni, R. Lozano, and M. W. Spong, "Energy based control of the pendubot, " IEEE Trans. Autom. Control, vol. 45, no. 4, pp. 725-729, Apr. 2000. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=847110
    [18]
    S. S. Ge, T. H. Lee, and G. Zhu, "Energy-based robust controller design for multi-link flexible robots, " Mechatronics, vol. 6, no. 7, pp. 779-798, Oct. 1996. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=577389
    [19]
    R. Ortega, W. M. Spong, F. Gomez-Estern, and G. Blankenstein, "Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment, " IEEE Trans. Autom. Control, vol. 47, no. 8, pp. 1218-1233, Aug. 2002. http://www.ams.org/mathscinet-getitem?mr=1917433
    [20]
    X. Xin and T. Yamasaki, "Energy-based swing-up control for a remotely driven acrobot: theoretical and experimental results, " IEEE Trans. Control Syst. Technol., vol. 20, no. 4, pp. 1048-1056, Jul. 2012. http://ieeexplore.ieee.org/document/5953535/
    [21]
    B. M. Maschke and A. J. van der Schaft, "Port-controlled Hamiltonian systems: modelling origins and system theoretic properties, " in Proc. 2nd IFAC Symp. Nonlinear Control Systems Design, Bordeaux, France, 1992, pp. 282-288. http://www.sciencedirect.com/science/article/pii/B9780080419015500646
    [22]
    W. W. Sun, "Stabilization analysis of time-delay Hamiltonian systems in the presence of saturation, " Appl. Math. Comput., vol. 217, no. 23, pp. 9625-9634, Aug. 2011. http://www.sciencedirect.com/science/article/pii/S0096300311006023
    [23]
    W. W. Sun and L. H. Peng, "Observer-based robust adaptive control for uncertain stochastic Hamiltonian systems with state and input delays, " Nonlinear Anal. Modell. Control, vol. 19, no. 4, pp. 626-645, Aug. 2014.
    [24]
    Y. Z. Wang and S. S. Ge, "Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems, " IEEE Trans. Control Syst. Technol., vol. 16, no. 2, pp. 202-213, Mar. 2008. http://ieeexplore.ieee.org/document/4410459/
    [25]
    R. Ortega, A. Loría, P. J. Nicklasson, and H. Sira-RamÍrez, Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. London, UK: Springer-Verlag, 1998.
    [26]
    L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators, London, UK: Springe, 2000.
    [27]
    K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems. Media, New York, USA: Springer, 2003.
    [28]
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, USA: Society for Industrial and Applied Mathematics, 1994.
    [29]
    Z. J. Li, X. Q. Cao, and N. Ding, "Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays, " IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 745-757, Aug. 2011. http://dl.acm.org/citation.cfm?id=2334134
    [30]
    S. Islam, P. X. Liu, and A. El Saddik, "Nonlinear adaptive control for teleoperation systems with symmetrical and unsymmetrical time-varying delay, " Int. J. Syst. Sci., vol. 46, no. 16, pp. 2928-2938, Dec. 2015.
    [31]
    Y. He, M. Wu, J. H. She, and G. P. Liu, "Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, " IEEE Trans. Autom. Control, vol. 49, no. 5, pp. 828-832, May 2004. http://www.ams.org/mathscinet-getitem?mr=2057826
    [32]
    D. Yue and Q. -L. Han, "Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching, " IEEE Trans. Autom. Control, vol. 50, no. 2, pp. 217-222, Feb. 2005. http://www.ams.org/mathscinet-getitem?mr=2057826
    [33]
    W. W. Sun and L. H. Peng, "Robust adaptive control of uncertain stochastic Hamiltonian systems with time varying delay, " Asian J. Control, vol. 18, no. 2, pp. 642-651, Feb. 2016. doi: 10.1002/asjc.1143/pdf
    [34]
    Y. Ren, W. W. Sun, and B. Z. Fu, Energy-based L2-disturbance attenuation control for robot manipulator with uncertainties and input delay. Br. J. Math. Comput. Sci., vol. 4, no. 17, 2403-2417, Sep. 2014. https://www.researchgate.net/publication/271263518_Energy-Based_-Disturbance_Attenuation_Control_for_Robot_Manipulator_With_Uncertainties_and_Input_Delay
    [35]
    S. S. Ge and C. J. Harris, Adaptive Neural Network Control of Robotic Manipulators. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 1998.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1143) PDF downloads(63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return