IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Tan and Z. Huang, “Synchronization of drive-response networks with delays on time scales,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1063–1065, Apr. 2024. doi: 10.1109/JAS.2016.7510043 |
[1] |
L. Kocarev and U. Parlitz, “General approach for chaotic synchronization with applications to communication,” Physical Review Letters, vol. 74, no. 25, pp. 5028–5031, 1995. doi: 10.1103/PhysRevLett.74.5028
|
[2] |
W. Yu, G. Chen, J. Lu, and J. Kurths, “Synchronization via pinning control on general complex networks,” SIAM J. Control Optimization, vol. 51, no. 2, pp. 1395–1416, 2013. doi: 10.1137/100781699
|
[3] |
J. Cao, H. Li, and D. Ho, “Synchronization criteria of Lur’e systems with time-delay feedback control,” Chaos Solutions Fractals, vol. 23, no. 4, pp. 1285–1298, 2005. doi: 10.1016/S0960-0779(04)00380-7
|
[4] |
J. Lu, D. Ho, J. Cao, and J. Kurths, “Exponential synchronization of linearly coupled neural networks with impulsive disturbances,” IEEE Trans. Neural Networks, vol. 22, no. 2, pp. 329–335, 2011. doi: 10.1109/TNN.2010.2101081
|
[5] |
G. Chen, J. Zhou, and Z. Liu, “Global synchronization of coupled delayed neural networks and applications to chaos CNN models,” Int. J. Bifurcation Chaos, vol. 14, no. 7, pp. 2229–2240, 2004. doi: 10.1142/S0218127404010655
|
[6] |
Z. Wu, G. Chen, and X. Fu, “Outer synchronization of drive-response dynamical networks via adaptive impulsive pinning control,” J. the Franklin Institute, vol. 352, no. 10, pp. 4297–4308, 2015. doi: 10.1016/j.jfranklin.2015.06.016
|
[7] |
J. Mei, M. Jiang, and J. Wang, “Finite-time structure identification and synchronization of drive-response systems with uncertain parameter,” Communi. in Nonlinear Science Numercial Simulation, vol. 18, no. 4, pp. 999–1015, 2013. doi: 10.1016/j.cnsns.2012.08.039
|
[8] |
M. Park, O. Kwon, J. Park, S. Lee, and E. Cha, “Synchronization of discrete-time complex dynamical networks with interval time-varying delays via non-fragile controller with randomly occurring perturbation,” J. the Franklin Institute, vol. 351, no. 10, pp. 4850–4871, 2014. doi: 10.1016/j.jfranklin.2014.07.020
|
[9] |
M. Bohner, and A. Peterson, Dynamic Equations on Time Scales: An Introduction With Applications, Boston, USA: Birkha$\ddot{u}$ser, 2001.
|
[10] |
Z. Huang, Y. Raffoul, and C. Cheng, “Scale-limited activating sets and multiperiodicity for threshold-linear networks on time scales,” IEEE Trans. Cyber., vol. 44, no. 4, pp. 488–499, 2014. doi: 10.1109/TCYB.2013.2257747
|
[11] |
K. Gopalsamy and I. Leung, “Delay induced periodicity in a neural netlet of excitation and inhibition,” Physical D Nonlinear Phenomena, vol. 89, no. 34, pp. 395–426, 1996.
|
[12] |
C. Li and S. Yang, “Exponential synchronization in drive-response systems of hopfield-type neural networks with time delays,” Int. J. Bifurcation Chaos, vol. 27, no. 11, pp. 4167–4176, 2007.
|
[13] |
Z. Yuan, Z. Xu, and L. Guo, “Generalized synchronization of two bidirectionally coupled discrete dynamical systems,” Communi Science Nonlinear Numerical Simulation, vol. 17, no. 2, pp. 992–1002, 2012. doi: 10.1016/j.cnsns.2011.07.014
|