A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Li, Y. Wu, G. Cheng, C. Tao, B. Dang, Y. Wang, J. Zhang, C. Zhang, Y. Liu, X. Tang, J. Ma, and Y. Zhang, “MEET: A million-scale dataset for fine-grained geospatial scene classification with zoom-free remote sensing imagery,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 0, pp. 1–20, Feb. 2025. doi: 10.1109/JAS.2025.125324
Citation: Y. Li, Y. Wu, G. Cheng, C. Tao, B. Dang, Y. Wang, J. Zhang, C. Zhang, Y. Liu, X. Tang, J. Ma, and Y. Zhang, “MEET: A million-scale dataset for fine-grained geospatial scene classification with zoom-free remote sensing imagery,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 0, pp. 1–20, Feb. 2025. doi: 10.1109/JAS.2025.125324

MEET: A Million-Scale Dataset for Fine-Grained Geospatial Scene Classification With Zoom-Free Remote Sensing Imagery

doi: 10.1109/JAS.2025.125324
Funds:  This work was supported by the National Natural Science Foundation of China (42030102, 42371321)
More Information
  • Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications. However, existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples. This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios. To address this limitation, we introduce the million-scale fine-grained geospatial scene classification dataset (MEET), which contains over 1.03 million zoom-free remote sensing scene samples, manually annotated into 80 fine-grained categories. In MEET, each scene sample follows a scene-in-scene layout, where the central scene serves as the reference, and auxiliary scenes provide crucial spatial context for fine-grained classification. Moreover, to tackle the emerging challenge of scene-in-scene classification, we present the context-aware transformer (CAT), a model specifically designed for this task, which adaptively fuses spatial context to accurately classify the scene samples. CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes. Based on MEET, we establish a comprehensive benchmark for fine-grained geospatial scene classification, evaluating CAT against 11 competitive baselines. The results demonstrate that CAT significantly outperforms these baselines, achieving a 1.88% higher balanced accuracy (BA) with the Swin-Large backbone, and a notable 7.87% improvement with the Swin-Huge backbone. Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping. The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.

     

  • loading
  • [1]
    J. Xie, N. He, L. Fang, and A. Plaza, “Scale-free convolutional neural network for remote sensing scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6916–6928, Sep. 2019. doi: 10.1109/TGRS.2019.2909695
    [2]
    X. Tang, Q. Ma, X. Zhang, F. Liu, J. Ma, and L. Jiao, “Attention consistent network for remote sensing scene classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2030–2045, 2021. (查阅网上资料,未找到本条文献月份信息,请确认)
    [3]
    H. Sun, S. Li, X. Zheng, and X. Lu, “Remote sensing scene classification by gated bidirectional network,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 82–96, Jan. 2020. doi: 10.1109/TGRS.2019.2931801
    [4]
    Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based feature selection for remote sensing scene classification,” IEEE Geosci. Remote Sens. Lett, vol. 12, no. 11, pp. 2321–2325, Nov. 2015. doi: 10.1109/LGRS.2015.2475299
    [5]
    S. R. Phinn, C. M. Roelfsema, and P. J. Mumby, “Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs,” Int. J. Remote Sens., vol. 33, no. 12, pp. 3768–3797, Jun. 2012. doi: 10.1080/01431161.2011.633122
    [6]
    N. B. Mishra and K. A. Crews, “Mapping vegetation morphology types in a dry savanna ecosystem: Integrating hierarchical object-based image analysis with random forest,” Int. J. Remote Sens., vol. 35, no. 3, pp. 1175–1198, Feb. 2014. doi: 10.1080/01431161.2013.876120
    [7]
    Z. Yang, H. Yu, M. Feng, W. Sun, X. Lin, M. Sun, Z.-H. Mao, and A. Mian, “Small object augmentation of urban scenes for real-time semantic segmentation,” IEEE Trans. Image Process., vol. 29, pp. 5175–5190, 2020. (查阅网上资料,未找到本条文献月份信息,请确认)
    [8]
    P. Gamba, “Human settlements: A global challenge for EO data processing and interpretation,” Proc. IEEE, vol. 101, no. 3, pp. 570–581, Mar. 2013. doi: 10.1109/JPROC.2012.2189089
    [9]
    T. R. Martha, N. Kerle, C. J. Van Westen, V. Jetten, and K. V. Kumar, “Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4928–4943, Dec. 2011. doi: 10.1109/TGRS.2011.2151866
    [10]
    G. Cheng, L. Guo, T. Zhao, J. Han, H. Li, and J. Fang, “Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA,” Int. J. Remote Sens., vol. 34, no. 1, pp. 45–59, Jan. 2013. doi: 10.1080/01431161.2012.705443
    [11]
    G. Fu, C. Liu, R. Zhou, T. Sun, and Q. Zhang, “Classification for high resolution remote sensing imagery using a fully convolutional network,” Remote Sens., vol. 9, no. 5, p. 498, May 2017. doi: 10.3390/rs9050498
    [12]
    X.-Y. Tong, G.-S. Xia, Q. Lu, H. Shen, S. Li, S. You, and L. Zhang, “Land-cover classification with high-resolution remote sensing images using transferable deep models,” Remote Sens. Environ., vol. 237, p. 111322, Feb. 2020. doi: 10.1016/j.rse.2019.111322
    [13]
    Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, and B. Guo, “Swin transformer V2: Scaling up capacity and resolution,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, New Orleans, USA, 2022, pp. 11999–12009.
    [14]
    X. Guo, J. Lao, B. Dang, Y. Zhang, L. Yu, L. Ru, L. Zhong, Z. Huang, K. Wu, D. Hu, H. He, J. Wang, J. Chen, M. Yang, Y. Zhang, and Y. Li, “SkySense: A multi-modal remote sensing foundation model towards universal interpretation for earth observation imagery,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2024, pp. 27662–27673.
    [15]
    Y. Long, G.-S. Xia, S. Li, W. Yang, M. Y. Yang, X. X. Zhu, L. Zhang, and D. Li, “On creating benchmark dataset for aerial image interpretation: Reviews, guidances, and million-AID,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 4205–4230, 2021. (查阅网上资料,未找到本条文献月份信息,请确认)
    [16]
    G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classification: Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10, pp. 1865–1883, Oct. 2017. doi: 10.1109/JPROC.2017.2675998
    [17]
    G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, and X. Lu, “AID: A benchmark data set for performance evaluation of aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965–3981, 2017. doi: 10.1109/TGRS.2017.2685945
    [18]
    F. Hu, W. Yang, J. Chen, and H. Sun, “Tile-level annotation of satellite images using multi-level max-margin discriminative random field,” Remote Sens., vol. 5, no. 5, pp. 2275–2291, May 2013. doi: 10.3390/rs5052275
    [19]
    Y. Li, X. Huang, and H. Liu, “Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images,” Photogramm. Eng. Remote Sens., vol. 83, no. 8, pp. 567–579, Aug. 2017. doi: 10.14358/PERS.83.8.567
    [20]
    Y. Huang, F. Zhang, Y. Gao, W. Tu, F. Duarte, C. Ratti, D. Guo, and Y. Liu, “Comprehensive urban space representation with varying numbers of street-level images,” Comput. Environ. Urban Syst., vol. 106, p. 102043, Dec. 2023. doi: 10.1016/j.compenvurbsys.2023.102043
    [21]
    C. Xiao, J. Zhou, J. Huang, H. Zhu, T. Xu, D. Dou, and H. Xiong, “A contextual master-slave framework on urban region graph for urban village detection,” in Proc. IEEE 39th Int. Conf. Data Engineering, Anaheim, USA, 2023, pp. 736–748.
    [22]
    W. Lu, C. Tao, H. Li, J. Qi, and Y. Li, “A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data,” Remote Sens. Environ., vol. 270, p. 112830, Mar. 2022. doi: 10.1016/j.rse.2021.112830
    [23]
    Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for land-use classification,” in Proc. 18th SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, San Jose, USA, 2010, pp. 270–279.
    [24]
    G.-S. Xia, W. Yang, J. Delon, Y. Gousseau, H. Sun, and H. Maître, “Structural high-resolution satellite image indexing,” in Proc. ISPRS TC VII Symp.-100 Years ISPRS, Vienna, Austria, 2010, pp. 298–303. (查阅网上资料,未找到本条文献页码信息,请确认)
    [25]
    S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and R. Nemani, “DeepSat: A learning framework for satellite imagery,” in Proc. 23rd SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, Seattle, USA, 2015, pp. 37.
    [26]
    O. A. B. Penatti, K. Nogueira, and J. A. Dos Santos, “Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015, pp. 44–51.
    [27]
    L. Zhao, P. Tang, and L. Huo, “Feature significance-based multibag-of-visual-words model for remote sensing image scene classification,” J. Appl. Remote Sens., vol. 10, no. 3, p. 035004, Jul. 2016. doi: 10.1117/1.JRS.10.035004
    [28]
    Q. Zhu, Y. Zhong, B. Zhao, G.-S. Xia, and L. Zhang, “Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery,” IEEE Geosci. Remote Sens. Lett, vol. 13, no. 6, pp. 747–751, Jun. 2016. doi: 10.1109/LGRS.2015.2513443
    [29]
    Z. Xiao, Y. Long, D. Li, C. Wei, G. Tang, and J. Liu, “High-resolution remote sensing image retrieval based on CNNs from a dimensional perspective,” Remote Sens., vol. 9, no. 7, p. 725, Jul. 2017. doi: 10.3390/rs9070725
    [30]
    P. Helber, B. Bischke, A. Dengel, and D. Borth, “EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 7, pp. 2217–2226, Jul. 2019. doi: 10.1109/JSTARS.2019.2918242
    [31]
    W. Zhou, S. Newsam, C. Li, and Z. Shao, “PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval,” ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 197–209, Nov. 2018. doi: 10.1016/j.isprsjprs.2018.01.004
    [32]
    Q. Wang, S. Liu, J. Chanussot, and X. Li, “Scene classification with recurrent attention of VHR remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 1155–1167, Feb. 2019. doi: 10.1109/TGRS.2018.2864987
    [33]
    G. Sumbul, M. Charfuelan, B. Demir, and V. Markl, “Bigearthnet: A large-scale benchmark archive for remote sensing image understanding,” in Proc. IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, 2019, pp. 5901–5904.
    [34]
    H. Li, X. Dou, C. Tao, Z. Wu, J. Chen, J. Peng, M. Deng, and L. Zhao, “RSI-CB: A large-scale remote sensing image classification benchmark using crowdsourced data,” Sensors, vol. 20, no. 6, p. 1594, Mar. 2020. doi: 10.3390/s20061594
    [35]
    X. Qi, P. Zhu, Y. Wang, L. Zhang, J. Peng, M. Wu, J. Chen, X. Zhao, N. Zang, and P. T. Mathiopoulos, “MLRSNet: A multi-label high spatial resolution remote sensing dataset for semantic scene understanding,” ISPRS J. Photogramm. Remote Sens., vol. 169, pp. 337–350, Nov. 2020. doi: 10.1016/j.isprsjprs.2020.09.020
    [36]
    H. Li, H. Jiang, X. Gu, J. Peng, W. Li, L. Hong, and C. Tao, “CLRS: Continual learning benchmark for remote sensing image scene classification,” Sensors, vol. 20, no. 4, p. 1226, Feb. 2020. doi: 10.3390/s20041226
    [37]
    Y. Li, D. Kong, Y. Zhang, Y. Tan, and L. Chen, “Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification,” ISPRS J. Photogramm. Remote Sens., vol. 179, pp. 145–158, Sep. 2021. doi: 10.1016/j.isprsjprs.2021.08.001
    [38]
    Y. Hua, L. Mou, P. Jin, and X. X. Zhu, “MultiScene: A large-scale dataset and benchmark for multiscene recognition in single aerial images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 5610213, 2022. (查阅网上资料,未找到本条文献月份信息,请确认)
    [39]
    J. Yuan, L. Ru, S. Wang, and C. Wu, “WH-MAVS: A novel dataset and deep learning benchmark for multiple land use and land cover applications,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15, pp. 1575–1590, 2022. (查阅网上资料,未找到本条文献月份信息,请确认)
    [40]
    F. Fang, L. Zeng, S. Li, D. Zheng, J. Zhang, Y. Liu, and B. Wan, “Spatial context-aware method for urban land use classification using street view images,” ISPRS J. Photogramm. Remote Sens., vol. 192, pp. 1–12, Oct. 2022. doi: 10.1016/j.isprsjprs.2022.07.020
    [41]
    R. Minetto, M. P. Segundo, and S. Sarkar, “Hydra: An ensemble of convolutional neural networks for geospatial land classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6530–6541, Sep. 2019. doi: 10.1109/TGRS.2019.2906883
    [42]
    H. C. Wittich, M. Seeland, J. Wäldchen, M. Rzanny, and P. Mäder, “Recommending plant taxa for supporting on-site species identification,” BMC Bioinformatics, vol. 19, no. 4, p. 190, May 2018.
    [43]
    Y. Li, L. Wang, T. Wang, X. Yang, J. Luo, Q. Wang, Y. Deng, W. Wang, X. Sun, H. Li, B. Dang, Y. Zhang, Y. Yu, and J. Yan, “STAR: A first-ever dataset and a large-scale benchmark for scene graph generation in large-size satellite imagery,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 47, no. 3, pp. 1832–1849, Mar. 2025. doi: 10.1109/TPAMI.2024.3508072
    [44]
    W. Yu, P. Zhou, S. Yan, and X. Wang, “InceptionNeXt: When inception meets ConvNeXt,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2024, pp. 5672–5683.
    [45]
    K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 770–778.
    [46]
    K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning for human pose estimation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 5686–5696.
    [47]
    Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li, “MaxViT: Multi-axis vision transformer,” in Proc. 17th European Conf. Computer Vision, Tel Aviv, Israel, 2022, pp. 459–479.
    [48]
    M. Ding, B. Xiao, N. Codella, P. Luo, J. Wang, and L. Yuan, “DaViT: Dual attention vision transformers,” in Proc. 17th European Conf. Computer Vision, Tel Aviv, Israel, 2022, pp. 74–92.
    [49]
    Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Montreal, Canada, 2021, pp. 9992–10002.
    [50]
    Y. Liu, J. Zhou, W. Qi, X. Li, L. Gross, Q. Shao, Z. Zhao, L. Ni, X. Fan, and Z. Li, “ARC-Net: An efficient network for building extraction from high-resolution aerial images,” IEEE Access, vol. 8, pp. 154997–155010, 2020. (查阅网上资料,未找到本条文献月份信息,请确认)
    [51]
    L. Bai, Q. Liu, C. Li, Z. Ye, M. Hui, and X. Jia, “Remote sensing image scene classification using multiscale feature fusion covariance network with octave convolution,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 5620214, 2022. (查阅网上资料,未找到本条文献月份信息,请确认)
    [52]
    W. Chen, S. Ouyang, W. Tong, X. Li, X. Zheng, and L. Wang, “GCSANet: A global context spatial attention deep learning network for remote sensing scene classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15, pp. 1150–1162, 2022. (查阅网上资料,未找到本条文献月份信息,请确认)
    [53]
    H. Song, Y. Yuan, Z. Ouyang, Y. Yang, and H. Xiang, “Quantitative regularization in robust vision transformer for remote sensing image classification,” Photogramm. Rec., vol. 39, no. 186, pp. 340–372, Jun. 2024. doi: 10.1111/phor.12489
    [54]
    F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery,” Remote Sens., vol. 7, no. 11, pp. 14680–14707, Nov. 2015. doi: 10.3390/rs71114680
    [55]
    E. Li, J. Xia, P. Du, C. Lin, and A. Samat, “Integrating multilayer features of convolutional neural networks for remote sensing scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5653–5665, Oct. 2017. doi: 10.1109/TGRS.2017.2711275
    [56]
    S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for VHR remote sensing scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4775–4784, Aug. 2017. doi: 10.1109/TGRS.2017.2700322
    [57]
    K. Xu, H. Huang, P. Deng, and G. Shi, “Two-stream feature aggregation deep neural network for scene classification of remote sensing images,” Inf. Sci., vol. 539, pp. 250–268, Oct. 2020. doi: 10.1016/j.ins.2020.06.011
    [58]
    J. Fang, Y. Yuan, X. Lu, and Y. Feng, “Robust space–frequency joint representation for remote sensing image scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 10, pp. 7492–7502, Oct. 2019. doi: 10.1109/TGRS.2019.2913816
    [59]
    Z. Xiong, Y. Wang, F. Zhang, A. J. Stewart, J. Hanna, D. Borth, I. Papoutsis, B. L. Saux, G. Camps-Valls, and X. X. Zhu, “Neural plasticity-inspired foundation model for observing the earth crossing modalities,” arXiv preprint arXiv: 2403.15356, 2024.
    [60]
    S. Srivastava, J. E. Vargas Muñoz, S. Lobry, and D. Tuia, “Fine-grained landuse characterization using ground-based pictures: A deep learning solution based on globally available data,” Int. J. Geogr. Inf. Sci., vol. 34, no. 6, pp. 1117–1136, Jun. 2020. doi: 10.1080/13658816.2018.1542698
    [61]
    Y. Yao, X. Yan, P. Luo, Y. Liang, S. Ren, Y. Hu, J. Han, and Q. Guan, “Classifying land-use patterns by integrating time-series electricity data and high-spatial resolution remote sensing imagery,” Int. J. Appl. Earth Obs. Geoinf., vol. 106, p. 102664, Feb. 2022.
    [62]
    C. Arbinger, M. Bullin, and A. Henrich, “Exploiting geodata to improve image recognition with deep learning,” in Proc. Web Conf., Lyon, France, 2022, pp. 648–655.
    [63]
    Y. Li, W. Chen, X. Huang, Z. Gao, S. Li, T. He, and Y. Zhang, “MFVNet: A deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation,” Sci. China Inf. Sci., vol. 66, no. 4, p. 140305, Mar. 2023. doi: 10.1007/s11432-022-3599-y
    [64]
    W. Chen, Z. Jiang, Z. Wang, K. Cui, and X. Qian, “Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 8916–8925.
    [65]
    H. K. Cheng, J. Chung, Y.-W. Tai, and C.-K. Tang, “CascadePSP: Toward class-agnostic and very high-resolution segmentation via global and local refinement,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 8887–8896.
    [66]
    Y. Li, J. Luo, Y. Zhang, Y. Tan, J.-G. Yu, and S. Bai, “Learning to holistically detect bridges from large-size VHR remote sensing imagery,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, pp. 11507–11523, Dec. 2024. doi: 10.1109/TPAMI.2024.3393024
    [67]
    Z. Bai, G. Li, and Z. Liu, “Global–local–global context-aware network for salient object detection in optical remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 198, pp. 184–196, Apr. 2023. doi: 10.1016/j.isprsjprs.2023.03.013
    [68]
    Y. Liu, S. Shi, J. Wang, and Y. Zhong, “Seeing beyond the patch: Scale-adaptive semantic segmentation of high-resolution remote sensing imagery based on reinforcement learning,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Paris, France, 2023, pp. 16822–16832.
    [69]
    L. Zhang, Z. Tan, G. Zhang, W. Zhang, and Z. Li, “Learn more and learn useful: Truncation compensation network for semantic segmentation of high-resolution remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 62, pp. 4403814, 2024. (查阅网上资料,未找到本条文献月份信息,请确认)
    [70]
    D. Wang, Q. Zhang, Y. Xu, J. Zhang, B. Du, D. Tao, and L. Zhang, “Advancing plain vision transformer toward remote sensing foundation model,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 5607315, 2023. (查阅网上资料,未找到本条文献月份信息,请确认)
    [71]
    D. Wang, J. Zhang, M. Xu, L. Liu, D. Wang, E. Gao, C. Han, H. Guo, B. Du, D. Tao, and L. Zhang, “MTP: Advancing remote sensing foundation model via multitask pretraining,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 17, pp. 11632–11654, 2024. (查阅网上资料,未找到本条文献月份信息,请确认)

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Article Metrics

    Article views (106) PDF downloads(38) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return