IEEE/CAA Journal of Automatica Sinica
Citation: | X. Yan, K. Deng, Q. Zou, Z. Tian, and H. Yu, “Self-cumulative contrastive graph clustering,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 6, pp. 1194–1208, Jun. 2025. doi: 10.1109/JAS.2024.125025 |
[1] |
L. Yang, C. Lv, X. Wang, J. Qiao, W. Ding, J. Zhang, and F.-Y. Wang, “Collective entity alignment for knowledge fusion of power grid dispatching knowledge graphs,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1990–2004, Nov. 2022. doi: 10.1109/JAS.2022.105947
|
[2] |
X. Wang, S. Zhao, L. Guo, L. Zhu, C. Cui, and L. Xu, “Graphca: Learning from graph counterfactual augmentation for knowledge tracing,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2108–2123, Nov. 2023. doi: 10.1109/JAS.2023.123678
|
[3] |
X. Xue, X. Yu, D. Zhou, X. Wang, C. Bi, S. Wang, and F.-Y. Wang, “Computational experiments for complex social systems: Integrated design of experiment system,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1175–1189, May 2024. doi: 10.1109/JAS.2023.123639
|
[4] |
X. Yan, Y. Ye, X. Qiu, M. Manic, and H. Yu, “CMIB: Unsupervised image object categorization in multiple visual contexts,” IEEE Trans. Ind. Inf., vol. 16, no. 6, pp. 3974–3986, Jun. 2020. doi: 10.1109/TII.2019.2939278
|
[5] |
X. Yan, Y. Mao, M. Li, Y. Ye, and H. Yu, “Multitask image clustering via deep information bottleneck,” IEEE Trans. Cybern., vol. 54, no. 3, pp. 1868–1881, Mar. 2024. doi: 10.1109/TCYB.2023.3273535
|
[6] |
Z. Wei, H. Zhao, Z. Li, X. Bu, Y. Chen, X. Zhang, Y. Lv, and F.-Y. Wang, “STGSA: A novel spatial-temporal graph synchronous aggregation model for traffic prediction,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 226–238, Jan. 2023. doi: 10.1109/JAS.2023.123033
|
[7] |
J. Li, R. Zheng, H. Feng, M. Li, and X. Zhuang, “Permutation equivariant graph framelets for heterophilous graph learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 9, pp. 11634–11648, Sept. 2024. doi: 10.1109/TNNLS.2024.3370918
|
[8] |
M. Li, A. Micheli, Y. G. Wang, S. Pan, P. Lió, G. S. Gnecco, and M. Sanguineti, “Guest editorial: Deep neural networks for graphs: Theory, models, algorithms, and applications,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4, pp. 4367–4372, Apr. 2024. doi: 10.1109/TNNLS.2024.3371592
|
[9] |
A. Bessadok, M. A. Mahjoub, and I. Rekik, “Graph neural networks in network neuroscience,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 5, pp. 5833–5848, May 2023. doi: 10.1109/TPAMI.2022.3209686
|
[10] |
C. Huang, M. Li, F. Cao, H. Fujita, Z. Li, and X. Wu, “Are graph convolutional networks with random weights feasible?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 2751–2768, Mar. 2023. doi: 10.1109/TPAMI.2022.3183143
|
[11] |
S. Wang, X. Lin, Z. Fang, S. Du, and G. Xiao, “Contrastive consensus graph learning for multi-view clustering,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2027–2030, Nov. 2022. doi: 10.1109/JAS.2022.105959
|
[12] |
T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv: 1611.07308, 2016.
|
[13] |
X. Yan, X. Yu, S. Hu, and Y. Ye, “Mutual boost network for attributed graph clustering,” Expert Syst. Appl., vol. 229, p. 120479, Nov. 2023. doi: 10.1016/j.eswa.2023.120479
|
[14] |
W. Tu, S. Zhou, X. Liu, X. Guo, Z. Cai, E. Zhu, and J. Cheng, “Deep fusion clustering network,” in Proc. 35th AAAI Conf. Artificial Intelligence, 2021, pp. 9978–9987.
|
[15] |
X. Yan, Z. Jin, F. Han, and Y. Ye, “Differentiable information bottleneck for deterministic multi-view clustering,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2024, pp. 27425–27434.
|
[16] |
X. Yan, Y. Mao, Y. Ye, and H. Yu, “Cross-modal clustering with deep correlated information bottleneck method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 10, pp. 13508–13522, Oct. 2024. doi: 10.1109/TNNLS.2023.3269789
|
[17] |
X. Yan, Y. Gan, Y. Mao, Y. Ye, and H. Yu, “Live and learn: Continual action clustering with incremental views,” in Proc. 38th AAAI Conf. Artificial Intelligence, Vancouver, Canada, 2024, pp. 16264–16271.
|
[18] |
A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” in Proc. 15th Int. Conf. Neural Information Processing Systems: Natural and Synthetic, Vancouver, Canada, 2001, pp. 849–856.
|
[19] |
M. Stoer and F. Wagner, “A simple min-cut algorithm,” J. ACM, vol. 44, no. 4, pp. 585–591, Jul. 1997. doi: 10.1145/263867.263872
|
[20] |
Z. Lin and Z. Kang, “Graph filter-based multi-view attributed graph clustering,” in Proc. 30th Int. Joint Conf. Artificial Intelligence, Montreal, Canada, 2021, pp. 2723–2729.
|
[21] |
D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep clustering network,” in Proc. Web Conf. 2020, Taipei, China, 2020, pp. 1400–1410.
|
[22] |
H. Xu, W. Xia, Q. Gao, J. Han, and X. Gao, “Graph embedding clustering: Graph attention auto-encoder with cluster-specificity distribution,” Neural Netw., vol. 142, pp. 221–230, Oct. 2021. doi: 10.1016/j.neunet.2021.05.008
|
[23] |
C. Gao, J. Zhu, F. Zhang, Z. Wang, and X. Li, “A novel representation learning for dynamic graphs based on graph convolutional networks,” IEEE Trans. Cybern., vol. 53, no. 6, pp. 3599–3612, Jun. 2023. doi: 10.1109/TCYB.2022.3159661
|
[24] |
X. Yang, C. Deng, K. Wei, J. Yan, and W. Liu, “Adversarial learning for robust deep clustering,” in Proc. 34th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, pp. 763.
|
[25] |
S. Pan, R. Hu, S.-F. Fung, G. Long, J. Jiang, and C. Zhang, “Learning graph embedding with adversarial training methods,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2475–2487, Jun. 2020. doi: 10.1109/TCYB.2019.2932096
|
[26] |
G. K. Kulatilleke, M. Portmann, and S. S. Chandra, “SCGC: Self-supervised contrastive graph clustering,” Neurocomputing, vol. 611, p. 128629, Jan. 2025. doi: 10.1016/j.neucom.2024.128629
|
[27] |
Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive learning with adaptive augmentation,” in Proc. Web Conf. 2021, Ljubljana, Slovenia, 2021, pp. 2069–2080.
|
[28] |
Z. Zhou, Y. Hu, Y. Zhang, J. Chen, and H. Cai, “Multiview deep graph infomax to achieve unsupervised graph embedding,” IEEE Trans. Cybern., vol. 53, no. 10, pp. 6329–6339, Oct. 2023. doi: 10.1109/TCYB.2022.3163721
|
[29] |
H. Zhong, J. Wu, C. Chen, J. Huang, M. Deng, L. Nie, Z. Lin, and X.-S. Hua, “Graph contrastive clustering,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Montreal, Canada, 2021, pp. 9204–9213.
|
[30] |
W. Xia, Q. Wang, Q. Gao, M. Yang, and X. Gao, “Self-consistent contrastive attributed graph clustering with pseudo-label prompt,” IEEE Trans. Multimedia, vol. 25, pp. 6665–6677, 2023. doi: 10.1109/TMM.2022.3213208
|
[31] |
Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and P. S. Yu, “Graph self-supervised learning: A survey,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 5879–5900, Jun. 2023.
|
[32] |
X. Yang, Y. Liu, S. Zhou, S. Wang, W. Tu, Q. Zheng, X. Liu, L. Fang, and E. Zhu, “Cluster-guided contrastive graph clustering network,” in Proc. 37th AAAI Conf. Artificial Intelligence, Washington, USA, 2023, pp. 10834–10842.
|
[33] |
J. Zhou, J. Shen, and Q. Xuan, “Data augmentation for graph classification,” in Proc. 29th ACM Int. Conf. Information & Knowledge Management, 2020, pp. 2341–2344.
|
[34] |
W. Li, E. Zhu, S. Wang, and X. Guo, “Graph clustering with high-order contrastive learning,” Entropy, vol. 25, no. 10, p. 1432, Oct. 2023. doi: 10.3390/e25101432
|
[35] |
Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, and J. Tang, “GraphMAE: Self-supervised masked graph autoencoders,” in Proc. 28th ACM SIGKDD Conf. Knowledge Discovery and Data Mining, Washington, USA, 2022, pp. 594–604.
|
[36] |
T. Wang, G. Yang, Q. He, Z. Zhang, and J. Wu, “NCAGC: A neighborhood contrast framework for attributed graph clustering,” arXiv preprint arXiv: 2206.07897, 2022.
|
[37] |
Y. Liu, X. Yang, S. Zhou, X. Liu, S. Wang, K. Liang, W. Tu, and L. Li, “Simple contrastive graph clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 10, pp. 13789–13800, Oct. 2024. doi: 10.1109/TNNLS.2023.3271871
|
[38] |
Y. Hu, H. You, Z. Wang, Z. Wang, E. Zhou, and Y. Gao, “Graph-MLP: Node classification without message passing in graph,” arXiv preprint arXiv: 2106.04051, 2021.
|
[39] |
H. Zhao, X. Yang, K. Wei, C. Deng, and D. Tao, “Unsupervised graph transformer with augmentation-free contrastive learning,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 11, pp. 7296–7307, Nov. 2024. doi: 10.1109/TKDE.2024.3386984
|
[40] |
Y. Wang, D. Chang, Z. Fu, J. Wen, and Y. Zhao, “Graph contrastive partial multi-view clustering,” IEEE Trans. Multimedia, vol. 25, pp. 6551–6562, 2023. doi: 10.1109/TMM.2022.3210376
|
[41] |
G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006. doi: 10.1126/science.1127647
|
[42] |
T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Proc. 5th Int. Conf. Learning Representations, Toulon, France, 2017.
|
[43] |
Z. Peng, H. Liu, Y. Jia, and J. Hou, “Attention-driven graph clustering network,” in Proc. 29th ACM Int. Conf. Multimedia, 2021, pp. 935–943.
|
[44] |
J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering analysis,” in Proc. 33rd Int. Conf. Machine Learning, New York, USA, 2016, pp. 478–487.
|
[45] |
C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed graph clustering: A deep attentional embedding approach,” in Proc. 28th Int. Joint Conf. Artificial Intelligence, Macao, China, 2019, pp. 3670–3676.
|
[46] |
N. Lee, J. Lee, and C. Park, “Augmentation-free self-supervised learning on graphs,” in Proc. 36th AAAI Conf. Artificial Intelligence, 2022, pp. 7372–7380.
|
[47] |
J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, and Q. V. H. Nguyen, “Are graph augmentations necessary? Simple graph contrastive learning for recommendation,” in Proc. 45th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Madrid, Spain, 2022, pp. 1294–1303.
|
[48] |
Y. Min, F. Wenkel, and G. Wolf, “Scattering GCN: Overcoming oversmoothness in graph convolutional networks,” in Proc. 34th Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, pp. 1215.
|
[49] |
L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, Nov. 2008.
|
[50] |
K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification,” in Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 1026–1034.
|
[51] |
G. M. Namata, B. London, L. Getoor, and B. Huang, “Query-driven active surveying for collective classification,” in Proc. Int. Workshop on Mining and Learning With Graphs, 2012.
|
[52] |
D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new benchmark collection for text categorization research,” J. Mach. Learn. Res., vol. 5, pp. 361–397, Dec. 2004.
|
[53] |
G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in classification,” in Proc. Int. Conf. Move to Meaningful Internet Systems, Sicily, Italy, 2003, pp. 986–996.
|
[54] |
K. Golalipour, E. Akbari, S. S. Hamidi, M. Lee, and R. Enayatifar, “From clustering to clustering ensemble selection: A review,” Eng. Appl. Artif. Intell., vol. 104, p. 104388, Sept. 2021. doi: 10.1016/j.engappai.2021.104388
|
[55] |
X. He, B. Wang, Y. Hu, J. Gao, Y. Sun, and B. Yin, “Parallelly adaptive graph convolutional clustering model,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4, pp. 4451–4464, Apr. 2024. doi: 10.1109/TNNLS.2022.3176411
|
[56] |
D. Xia, X. Wang, N. Liu, and C. Shi, “Learning invariant representations of graph neural networks via cluster generalization,” in Proc. 37th Int. Conf. Neural Information Processing Systems, New Orleans, USA, 2024, pp. 1976.
|
[57] |
Y.-K. Xu, D. Huang, C.-D. Wang, and J.-H. Lai, “GLAC-GCN: Global and local topology-aware contrastive graph clustering network,” IEEE Trans. Artif. Intell., 2024, DOI: 10.1109/TAI.2024.3413694.
|
[58] |
D. Shi, L. Zhu, Y. Li, J. Li, and X. Nie, “Robust structured graph clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4424–4436, Nov. 2020. doi: 10.1109/TNNLS.2019.2955209
|
[59] |
M. Allaoui, M. L. Kherfi, and A. Cheriet, “Considerably improving clustering algorithms using UMAP dimensionality reduction technique: A comparative study,” in Proc. 9th Int. Conf. Image and Signal Processing, Marrakesh, Morocco, 2020, pp. 317–325.
|
[60] |
P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in Proc. 6th Int. Conf. Learning Representations, Vancouver, Canada, 2018.
|
[61] |
H. H. Bock, “On some significance tests in cluster analysis,” J. Classif., vol. 2, no. 1, pp. 77–108, Dec. 1985. doi: 10.1007/BF01908065
|
[62] |
C.-T. Kuo, X. Wang, P. Walker, O. Carmichael, J. Ye, and I. Davidson, “Unified and contrasting cuts in multiple graphs: Application to medical imaging segmentation,” in Proc. 21st ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Sydney, Australia, 2015, pp. 617–626.
|