IEEE/CAA Journal of Automatica Sinica
Citation: | F. Song, N. Cui, S. Chen, K. Zhang, Y. Liu, X. Chen, and J. Tan, “Beyond performance of learning control subject to uncertainties and noise: A frequency-domain approach applied to wafer stages,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 1, pp. 198–214, Jan. 2025. doi: 10.1109/JAS.2024.124968 |
[1] |
M. F. Heertjes, H. Butler, N. J. Dirkx, S. H. Van Der Meulen, R. Ahlawat, K. O’Brien, J. Simonelli, K.-T. Teng, and Y. Zhao, “Control of wafer scanners: Methods and developments,” in Proc. American Control Conf., Denver, USA, 2020, pp. 3686–3703.
|
[2] |
M. M. Seron, J. H. Braslavsky, and G. C. Goodwin, Fundamental Limitations in Filtering and Control, London, UK: Springer, 1997.
|
[3] |
F. Song, Y. Liu, Y. Dong, X. Chen, and J. Tan, “Motion control of wafer scanners in lithography systems: From setpoint generation to multistage coordination,” IEEE Trans. Instrum. Meas., vol. 73, p. 7508040, Jun. 2024.
|
[4] |
J. Van Zundert and T. Oomen, “On inversion-based approaches for feedforward and ILC,” Mechatronics, vol. 50, pp. 282–291, Apr. 2018. doi: 10.1016/j.mechatronics.2017.09.010
|
[5] |
L. Dai, X. Li, Y. Zhu, and M. Zhang, “Quantitative tracking error analysis and feedforward compensation under different model-based feedforward controllers in different control architectures,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 381–390, Jan. 2021. doi: 10.1109/TIE.2019.2960717
|
[6] |
S. Devasia, “Should model-based inverse inputs be used as feed forward under plant uncertainty?” IEEE Trans. Autom. Control, vol. 47, no. 11, pp. 1865–1871, Nov. 2002.
|
[7] |
J. Van Zundert and T. Oomen, “Inverting nonminimum-phase systems from the perspectives of feedforward and ILC,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 12101–12106, Jul. 2017. doi: 10.1016/j.ifacol.2017.08.2135
|
[8] |
M. F. Heertjes, “Data-based motion control of wafer scanners,” IFAC-PapersOnLine, vol. 49, no. 13, pp. 1–12, 2016. doi: 10.1016/j.ifacol.2016.07.918
|
[9] |
S. Mishra and M. Tomizuka, “Projection-based iterative learning control for wafer scanner systems,” IEEE/ASME Trans. Mech., vol. 14, no. 3, pp. 388–393, Jun. 2009. doi: 10.1109/TMECH.2008.2007302
|
[10] |
F. Song, Y. Liu, J. Cao, L. Li, and J. Tan, “Model-based ILC with a modified Q-filter for complex motion systems: Practical considerations and experimental verification on a wafer stage,” Complexity, vol. 2018, no. 1, p. 5406035, Jan. 2018. doi: 10.1155/2018/5406035
|
[11] |
Z.-S. Hou and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Inf. Sci., vol. 235, pp. 3–35, Jun. 2013. doi: 10.1016/j.ins.2012.07.014
|
[12] |
R. Chi, H. Li, D. Shen, Z. Hou, and B. Huang, “Enhanced P-type control: Indirect adaptive learning from set-point updates,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1600–1613, Mar. 2023. doi: 10.1109/TAC.2022.3154347
|
[13] |
X. Ge, J. L. Stein, and T. Ersal, “A frequency-dependent filter design approach for norm-optimal iterative learning control and its fundamental trade-off between robustness, convergence speed, and steady-state error,” J. Dyn. Syst., Meas., Control, vol. 140, no. 2, p. 021004, Feb. 2018. doi: 10.1115/1.4037271
|
[14] |
S. Tien, Q. Zou, and S. Devasia, “Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation,” IEEE Trans. Control Syst. Technol., vol. 13, no. 6, pp. 921–931, Nov. 2005. doi: 10.1109/TCST.2005.854334
|
[15] |
X. Ge, J. L. Stein, and T. Ersal, “Frequency-domain analysis of robust monotonic convergence of norm-optimal iterative learning control,” IEEE Trans. Control Syst. Technol., vol. 26, no. 2, pp. 637–651, Mar. 2018. doi: 10.1109/TCST.2017.2692729
|
[16] |
A. Tayebi, S. Abdul, M. B. Zaremba, and Y. Ye, “Robust iterative learning control design: Application to a robot manipulator,” IEEE/ASME Trans. Mech., vol. 13, no. 5, pp. 608–613, Oct. 2008. doi: 10.1109/TMECH.2008.2004627
|
[17] |
C.-Y. Lin, L. Sun, and M. Tomizuka, “Matrix factorization for design of Q-filter in iterative learning control,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 6076–6082.
|
[18] |
A. A. Armstrong, A. J. Wagoner Johnson, and A. G. Alleyne, “An improved approach to iterative learning control for uncertain systems,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 546–555, Mar. 2021. doi: 10.1109/TCST.2019.2952327
|
[19] |
X. Fu, X. Yang, P. Zanchetta, Y. Liu, C. Ding, M. Tang, and Z. Chen, “Frequency-domain data-driven adaptive iterative learning control approach: With application to wafer stage,” IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9309–9318, Oct. 2021. doi: 10.1109/TIE.2020.3022503
|
[20] |
R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach. 2nd ed. Hoboken, USA: John Wiley and Sons, 2012.
|
[21] |
R. De Rozario and T. Oomen, “Frequency response function-based learning control: Analysis and design for finite-time convergence,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1807–1814, Mar. 2023. doi: 10.1109/TAC.2022.3159489
|
[22] |
R. Chi, B. Huang, Z. Hou, and S. Jin, “Data-driven high-order terminal iterative learning control with a faster convergence speed,” Int. J. Robust Nonlinear Control, vol. 28, no. 1, pp. 103–119, Jan. 2018. doi: 10.1002/rnc.3861
|
[23] |
K.-S. Kim and Q. Zou, “A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems,” IEEE/ASME Trans. Mech., vol. 18, no. 6, pp. 1767–1777, Dec. 2013. doi: 10.1109/TMECH.2012.2212912
|
[24] |
R. de Rozario and T. Oomen, “Data-driven iterative inversion-based control: Achieving robustness through nonlinear learning,” Automatica, vol. 107, pp. 342–352, Sep. 2019. doi: 10.1016/j.automatica.2019.05.062
|
[25] |
Z. Zhang and Q. Zou, “Optimal data-driven difference-inversion-based iterative control: High-speed nanopositioning tracking example,” IEEE Trans. Control Syst. Technol., vol. 31, no. 1, pp. 144–154, Jan. 2023. doi: 10.1109/TCST.2022.3168496
|
[26] |
S. Devasia, “Iterative machine learning for output tracking,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 516–526, Mar. 2019. doi: 10.1109/TCST.2017.2772807
|
[27] |
S. Ito, H. W. Yoo, and G. Schitter, “Comparison of modeling-free learning control algorithms for galvanometer scanner’s periodic motion,” in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics, Munich, Germany, 2017, pp. 1357–1362.
|
[28] |
J. Wang, D. Huang, S. Fang, Y. Wang, and W. Xu, “Model predictive control for ARC motors using extended state observer and iterative learning methods,” IEEE Trans. Energy Convers., vol. 37, no. 3, pp. 2217–2226, Sep. 2022.
|
[29] |
Y. Hui, R. Chi, B. Huang, and Z. Hou, “Extended state observer-based data-driven iterative learning control for permanent magnet linear motor with initial shifts and disturbances,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 3, pp. 1881–1891, Mar. 2021. doi: 10.1109/TSMC.2019.2907379
|
[30] |
G. Zhang, X. Zhao, Q. Wang, D. Ding, B. Li, G. Wang, and D. Xu, “PR internal mode extended state observer-based iterative learning control for thrust ripple suppression of PMLSM drives,” IEEE Trans. Power Electron., vol. 39, no. 8, pp. 10095–10105, Aug. 2024. doi: 10.1109/TPEL.2024.3395691
|
[31] |
D. Huang, D. Min, Y. Jian, and Y. Li, “Current-cycle iterative learning control for high-precision position tracking of piezoelectric actuator system via active disturbance rejection control for hysteresis compensation,” IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8680–8690, Oct. 2020. doi: 10.1109/TIE.2019.2946554
|
[32] |
F. Boeren, A. Lanzon, and T. Oomen, “Iterative identification and control using non-normalized coprime factors with application in wafer stage motion control,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 413–424, Mar. 2020. doi: 10.1109/TCST.2018.2877680
|
[33] |
R. De Rozario, A. Fleming, and T. Oomen, “Finite-time learning control using frequency response data with application to a nanopositioning stage,” IEEE/ASME Trans. Mech., vol. 24, no. 5, pp. 2085–2096, Oct. 2019. doi: 10.1109/TMECH.2019.2931407
|
[34] |
Z. Gao, “Scaling and bandwidth-parameterization based controller tuning,” in Proc. American Control Conf., Denver, USA, 2003, pp. 4989–4996.
|
[35] |
B. Delyon and A. Juditsky, “Accelerated stochastic approximation,” SIAM J. Optim., vol. 3, no. 4, pp. 868–881, Nov. 1993. doi: 10.1137/0803045
|
[36] |
F. Song, Y. Liu, W. Jin, J. Tan, and W. He, “Data-driven feedforward learning with force ripple compensation for wafer stages: A variable-gain robust approach,” IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 4, pp. 1594–1608, Apr. 2022. doi: 10.1109/TNNLS.2020.3042975
|