IEEE/CAA Journal of Automatica Sinica
Citation: | M. Yang, M. Ye, and J. Shi, “Distributed Nash equilibrium seeking for games under unknown dead-zone inputs and DoS attacks: A digital twin approach,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1944–1946, Sept. 2025. doi: 10.1109/JAS.2024.124875 |
[1] |
M. Ye, Q.-L. Han, L. Ding, and S. Xu, “Distributed Nash equilibrium seeking in games with partial decision information: A survey,” Proc. IEEE, vol. 111, no. 2, pp. 140–157, 2023. doi: 10.1109/JPROC.2023.3234687
|
[2] |
M. Ye, D. Li, Q.-L. Han, and L. Ding, “Distributed Nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 376–387, 2023. doi: 10.1109/JAS.2022.105428
|
[3] |
M. Ye, Q.-L. Han, L. Ding, and S. Xu, “Fully distributed Nash equilibrium seeking for high-order players with actuator limitations,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1434–1444, 2023. doi: 10.1109/JAS.2022.105983
|
[4] |
G. Shao, X. -F. Wang, and R. Wang, “A distributed strategy for games in Euler-Lagrange systems with actuator dead zone,” Neurocomputing, vol. 560, p. 126844, 2023. doi: 10.1016/j.neucom.2023.126844
|
[5] |
B. Wu, X. Cao, and L. Xing, “Robust adaptive control for attitude tracking of spacecraft with unknown dead-zone,” Aero. Sci. and Tech., vol. 45, pp. 196–202, 2015. doi: 10.1016/j.ast.2015.05.014
|
[6] |
C. Yu, Y. Zhong, L. Lian, and X. Xiang, “An experimental study of adaptive bounded depth control for underwater vehicles subject to thruster’s dead-zone and saturation,” Applied Ocean Research, vol. 117, p. 102947, 2021. doi: 10.1016/j.apor.2021.102947
|
[7] |
G. Shao, R. Wang, M. Ye, and X. -F. Wang, “Distributed Nash equilibrium seeking under input dead zone,” IEEE Trans. Autom. Control, vol. 67, no. 12, pp. 6818–6825, 2022. doi: 10.1109/TAC.2021.3133182
|
[8] |
J. Chen, S. Qian, and S. Qin, “An adaptive generalized Nash equilibrium seeking algorithm under high-dimensional input dead-zone,” Information Sciences, vol. 626, pp. 354–369, 2023. doi: 10.1016/j.ins.2023.01.056
|
[9] |
X.-S. Wang, C.-Y. Su, and H. Hong, “Robust adaptive control of a class of nonlinear systems with unknown dead-zone,” Automatica, vol. 40, no. 3, pp. 407–413, 2004. doi: 10.1016/j.automatica.2003.10.021
|
[10] |
Y. Chen and Q. Ma, “Distributed Nash equilibrium seeking for games in systems with non-symmetric dead-zone inputs,” IEEE Trans. Net. Sci. and Engin., vol. 11, no. 3, pp. 3213–3221, 2024. doi: 10.1109/TNSE.2024.3365108
|
[11] |
F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control of Multi-Agent Systems Optimal and Adaptive Design Approaches, London, UK: Springer-Verlag, 2014.
|
[12] |
X. Gong, J. Peng, D. Yang, Z. Shu, T. Huang, and Y. Cui, “Data-driven leader-following consensus for nonlinear multi-agent systems against composite attacks: A twins layer approach,” J. Franklin Institute, vol. 361, no. 14, p. 107067, 2024.
|
[13] |
M. Ye, J. Yin, and L. Yin, “Distributed Nash equilibrium seeking for games in second-order systems without velocity measurement,” IEEE Trans. Autom. Control, vol. 67, no. 11, pp. 6195–6202, 2022. doi: 10.1109/TAC.2021.3131553
|
[14] |
D. Li, M. Ye, L. Ding, and S. Xu, “Distributed Nash equilibrium computation with uncertain dynamics and disturbances,” IEEE Trans. Net. Sci. and Engin., vol. 9, no. 3, pp. 1376–1385, 2022. doi: 10.1109/TNSE.2022.3142523
|
[15] |
Y. Zhong, Y. Yuan, and H. Yuan, “Nash Equilibrium seeking for multi-agent systems under DoS attacks and disturbances,” IEEE Trans. Indus. Inform., vol. 20, no. 4, pp. 5395–5405, 2024. doi: 10.1109/TII.2023.3332951
|
[16] |
C. Qian and L. Ding, “Fully distributed attack-resilient nash equilibrium seeking for networked games subject to DoS attacks,” Inform. Sci., vol. 641, p. 119080, 2023. doi: 10.1016/j.ins.2023.119080
|
[17] |
X.-F. Wang, X.-M. Sun, M. Ye, and K.-Z. Liu, “Robust distributed Nash equilibrium seeking for games under attacks and communication delays,” IEEE Trans. Autom. Control, vol. 67, no. 9, pp. 4892–4899, 2022. doi: 10.1109/TAC.2022.3164984
|